
he desktop computer dominates the electronic systems market. It is a consumer item, which
means it is built at the lowest possible cost. We’re familiar with the legendarily low margins
in the personal computer business. Manufacturers compete on performance, so the PC is

also built for the highest possible performance. Even though this market segment contains many
more devices than the desktop computer, we’ll call it the desktop computer segment. That’s the sit-
uation today; that situation is changing.

The world is splitting into tethered and untethered devices. Tethered devices support the
global information grid: computing, access ports, data transport, and storage. The earth will look
like an infinite source for on-demand computing. It will provide access ports everywhere
(untethered devices need only enough bandwidth and transmitter power to reach the nearest
access port). The earth will provide data transport from any port to any destination. And the
earth will be an infinite repository.

Untethered (mobile) devices of the future are the producers and consumers of data. They have
the sensors that collect information and they have the actuators and displays for the consumption
of data. Mobile devices will adapt to the situation with computing, functions, and storage that are
necessary to meet demands that change with time. They are consumer-oriented devices with high
computational requirements. Because they are consumer products, they must be low cost (con-
sumer markets are highly sensitive to cost). Because they are mobile products, they must have long
battery life. Because they must calculate and communicate in a real-time environment, they must
be built for performance. Consumers want low price, long battery life, and instant answers from
their portable devices. This market is the intersection of the consumer, low-power, and perform-
ance segments. It is the most challenging and most rewarding segment to reach. It also leads the
market as an indicator of the future—components in high-cost, low-volume products of today
will migrate to the low-cost, high-volume products of tomorrow. I call this segment the leading-
edge wedge (discussed in Dynamic Silicon Vol. I, No. 1).

In my career, I’ve been struck by lightning three times. The first time was in 1977. I was an
assistant professor at the University of Texas when Tom Gunter walked into my office and asked
me to design a microprocessor at Motorola. Actually, he asked if I would design the on-chip cache
for MACS (Motorola Advanced Computer System—later changed to MC68000). I joined
Motorola only to be immediately diverted from cache design into the microprocessor’s logic
design and microcode—“just until we can find someone competent to take over the logic design.”
I finished the logic design before anyone competent replaced me. It was a two-year, labor-inten-
sive, pencil-and-paper design. I translated the English-language descriptions of instructions into
equations and I translated those equations into the microprocessor’s logic gates and microcode.
The magic of engineering is its transformation of plain-language behavioral descriptions into
working engines. I learned about microprocessor design.

DynamicSilicon
The Investor's Guide to Breakthrough Micro Devices

Published by
Gilder Publishing, LLC

Written by
Nick Tredennick

Dynamic Logic vs. Computing

T

In the late 1970s, transistors were scarce and electrical power
was free. Speed and function were important. We wanted the
fastest, most capable chip we could get within the transistor
budget. I spent months of engineering time improving the func-
tional efficiency of the design (to get the maximum benefit from
every resident transistor). Speed was important: our target was 8
MHz. (I thought Tom was daft when he said that someday the
MC68000 would reach 25 MHz.) We didn’t want people using
MC68000s as hot plates for coffee cups, but we weren’t worried
about power; we assumed the microprocessor’s host system
would be plugged into the wall.

Our goals: speed, performance, and capability—more is
better. Our assumptions: transistors are scarce, design must be
efficient (labor-intensive), and within reason, power is free. In
the years since, the goals have stayed the same, but semicon-
ductor progress has changed the assumptions. Chips are big-
ger and transistors are smaller. Today, there’s an abundance of
transistors and a shortage of designers (transistor design can’t
be as labor intensive as it was). Today’s “more is better” lead-
ing-edge microprocessors operate above 1,200 MHz and dis-
sipate a coffee-warming 50-60 watts.

As the world goes mobile, the microprocessor is trying to
turn the corner by adding “low power” to its “speed, perform-
ance, and capability” goals. Vested interests will mount heroic
efforts, but it’s a losing cause. As we’ll see, speed and low power
conflict. The microprocessor is starting in the wrong place and
it cannot get where it needs to go. The microprocessor’s dilem-
ma is an opportunity for a disruptive technology. I found a dis-
ruptive technology the second time I was struck by lightning.

In 1993, Bob Hartmann, founder and VP of Business
Development at Altera, walked into my office and asked if I
wanted to be Chief Scientist. I did. Altera’s circuit designers
built its business on programmable logic devices (PLDs), inte-
grated circuits that let the engineer “program” logic circuits.
Semiconductor progress had carried integrated circuits past a
million transistors. Who would be the customers for these and
future parts? I learned a lot about the programmable-logic mar-
ket. Programmable logic has the potential to be a disruptive

technology. Altera and Xilinx had (and still have) the lion’s
share of the programmable-logic market. Could PLDs from
Altera and Xilinx be the disruptive technology that displaces the
microprocessor in the mobile world of the future? No. Altera
and Xilinx are growing as fast as they can to support cus-
tomers they already have. These companies have a great
future, but they are trapped by their customers and, therefore,
are unable to take advantage of this new opportunity. New
companies will exploit the opportunity. Their disruptive solu-
tions will create enormous wealth for themselves and for their
backers. I know how this might happen, which brings us to
the third time I was struck by lightning.

I got interested in microelectromechanical systems
(MEMS) and had been collecting clippings for a couple of
years when George Gilder asked if I wanted to write a newslet-
ter on breakthrough micro devices. I did. Microprocessors were
breakthrough micro devices. PLDs were breakthrough micro
devices. Microelectromechanical systems are today’s break-
through micro devices. Because I have been struck by lightning
at the right times, I have both the necessary experience and the
platform to tell you where we are in microprocessors, where
we’re headed, how we’re getting there, why that won’t work,
and what disruptive technologies will be creating enormous
wealth in the near future. Here’s a sample.

The microprocessor’s commercial introduction in 1971 dis-
rupted and displaced the established market for integrated-cir-
cuit macro functions. In thirty years, the microprocessor grew
from nothing to billions of units annually, making Intel one of
the most successful companies of all time. The microprocessor
market will continue to expand. In the future, however, deriv-
atives of PLDs will disrupt established microprocessor market
segments. They will do so because increased demand for
portable devices will change the goal from performance to effi-
ciency. Programmable logic devices that conserve clock fre-
quency will displace microprocessors that waste it.

Engineering problems
The microprocessor, and the computer more generally, rep-

resented a fundamental breakpoint, a historical demarcation
dividing engineering history into two eras, the first lasting tens
of millennia, and the second now barely in its fifth decade.

Until fifty years ago, all engineers worked in the same
way: they solved problems by building the solution, “map-
ping the application” directly into hardware. Any intelligence
required by the solution was manifested in the physical struc-
ture of the device. At first blush this seems obvious.

Imagine graphing all the engineering problems of the
world onto fig. 1, below, which rates problems and their solu-
tions in two ways: by the magnitude of the problem (hori-
zontal axis) and by the speed required to get the solution (ver-
tical axis)—an answer that arrives too late to apply is no solu-
tion. In today’s terms, electronics for blenders and toasters
would be close to the origin, while systems for real-time
weather modeling and for aircraft flight control would be far
from the origin both in performance and in problem size.

2 Dynamic Silicon

Editors Nick Tredennick
Brion Shimamoto

Publisher Lauryn Franzoni
Associate Editor Keri Geiger
Designer Julie Ward
President Mark T. Ziebarth
Chairman George Gilder
DynamicSilicon is published monthly by Gilder Publishing, LLC.
Editorial and Business address: P.O. Box 660, Monument Mills,
Housatonic, MA 01236. Copyright 2000, Gilder Publishing, LLC.
Editorial inquiries can be sent to: bozo@gildertech.com Single-issue
price: $50. For subscription information, call 800.229.2573, e-mail us at
dynamic@gildertech.com, or visit our website at www.dynamicsilicon.com

DynamicSilicon

For most of history the only problems engineers could
solve were clustered down and to the left, because with hard-
ware only we usually cannot solve very big problems.

Where we are
The invention of the computer was a breakthrough in

problem solving. The computer separated the algorithm (rig-
orous steps that solve a problem) from the hardware and
broke the affordability constraint. The computer amortized
expensive hardware resources over time by iterating to solve
the problem. A single computer could solve a range of prob-
lems (amortizing the cost of expensive hardware across appli-
cations). The computer could solve a problem of any size—
provided you had the time to wait for the answer. The com-
puter opened a previously inaccessible region of engineering

problems: large problems with limited performance require-
ments (down and to the right in fig. 2).

In 1943, IBM’s founder Thomas J. Watson, Sr., predicted
that five large computers would satisfy the world need.
Invention of the solid-state transistor and the integrated circuit
made that one of the worst predictions ever made. With billions
of microprocessors shipping every year, Tom’s projection was off
by at least ten orders of magnitude. What an interesting world
where an expert’s prediction could be off by that much!

The transistor and the integrated circuit (IC) accelerated
the design of electronics and fostered rapid penetration of
electronics into consumer markets. ICs are prepackaged cir-
cuits on a single piece of silicon (chip). The integrated circuit
made the engineer’s job easier because integrated circuits
made building blocks. Think of them as Lego blocks for elec-
tronic systems: the engineer didn’t have to think about each
individual transistor, resistor, and capacitor in a design. IC
macros, most notably the transistor-transistor logic (TTL)
family, quickly displaced discrete components in electronic
systems. TTL began as a small family of elemental logic chips
(inverters, latches, flip-flops, Boolean gates, half-adders,
etc.)—the building blocks of complex logic systems. As semi-
conductor fabrication improved, the TTL family grew in
complexity and diversity, enabling the designer to build more
complex logic systems from fewer chips.

The integrated circuit, together with continuing improve-
ments in semiconductor fabrication extended the range of
affordable solutions for both direct hardware implementa-
tions and for the computer. Computers became faster and
more capable and they became smaller and cheaper.
Mainframe computers extended the range of affordable solu-
tions to problems requiring more performance. The mini-
computer encroached on the low end of the mainframe’s
problem range and it brought affordable solutions to smaller
problems. The arrows in fig. 2 indicate the expansion of the
range of affordable solutions. New components got faster and
more complex, extending the range of affordable solutions to
larger problems and to problems with higher performance
requirements. The same semiconductor fabrication progress
that made integrated circuits faster and more complex also
made old ones smaller and cheaper. Rapidly expanding appli-
cations led to higher component production volumes that
drove the integrated circuit down the manufacturing learning
curve to better performance and to lower cost.

Semiconductor fabrication improvements led to the
microprocessor. The microprocessor was originally intended
as a logic replacement device. That is, engineers built systems
with a microprocessor, memory chips, and a few standard
peripheral chips instead of building them with TTL blocks.
The microprocessor displaced TTL for the same reason TTL
had displaced discrete components: it made design easier. The
microprocessor brought the computer’s problem-solving
methods to the region of engineering problems that had pre-
viously been solved with TTL building blocks. Problem solv-
ing became programming (see fig. 3).

Special Report 3

Fig. 1. Engineering problems map into an
area bounded by size and speed.

Fig. 2. The computer is a breakthrough problem-solving method. It
amortized expensive hardware over time to solve large problems.

The microprocessor is not as efficient as TTL building
blocks because the microprocessor is an indirect solution.
TTL building blocks construct the function directly; the
indirect solution programs general-purpose logic (the micro-
processor’s arithmetic and logic resources) to construct the
desired function. The general-purpose microprocessor’s solu-
tion is less direct and less efficient, but it leads to wider appli-
cation. Wider application means higher production volumes:
the microprocessor trades efficiency for production volume.
This is a smart trade as long as the microprocessor’s ineffi-
ciency isn’t important to the application.

For semiconductors, high-volume production leads to
rapidly decreasing cost and to improved performance.
Semiconductor fabrication improvements increase the micro-
processor’s speed to help overcome inherent inefficiencies in
programmed solutions, leading to wider application. The
microprocessor became fit for consumer applications (i.e.,
low cost and adequate performance).

With continuing improvements in semiconductor fabri-
cation the microprocessor’s performance increased to the
point that it started to encroach on the domain of the mini-
computer. The microprocessor made the transition from
embedded systems to computers in 1974 (only three years
after the microprocessor’s commercial introduction). It took
some time for the microprocessor to be accepted as the brain
in computer systems, but that happened in 1981 when IBM
introduced its Personal Computer based on the Intel 8088.
With the IBM personal computer, microprocessor design
transitioned from an emphasis on low cost and on adequate
performance to an emphasis on performance.

How we’re getting there
Design for the desktop-computer segment has dominated

the industry. The leading microprocessors for desktop comput-
ers are designed for maximum performance. The microproces-
sor’s performance on a program is proportional to its speed

(clock frequency, f) times the number of instructions it executes
per clock tick (instructions per clock, ipc), divided by the num-
ber of instructions (n) in the program:

Performance ≈ f·ipc/n

Engineers improve microprocessor performance by writ-
ing programs that use fewer instructions, by adding more
powerful instructions, by increasing the number of instruc-
tions to execute each clock tick, and by increasing the clock
frequency. Adding more powerful instructions and increasing
the number of instructions to execute each clock tick increase
the complexity of a microprocessor’s design.

Engineers take advantage of the improvements in semicon-
ductor fabrication by loading the design with more transistors
and by increasing the clock frequency. With this combination of
increasing circuit complexity and rising clock frequency, engi-
neers have been able to double microprocessor performance
every eighteen months. That works for the desktop-computer
segment and it works for the performance segment. It’s a good
strategy for applications that connect to the power grid. This
strategy (increasing complexity and raising clock frequency) isn’t
a good fit for leading-edge mobile applications. The require-
ment for long battery life gets in the way.

Power dissipation in digital systems is approximately one
half times the capacitance times the square of the voltage
times the frequency:

Power ≈ 1/2 ·c·V2·f

The compromise that engineers make, designing for mobile
applications, is to lower the voltage. Since the voltage term is
squared in the power-dissipation equation, a small change in the
voltage means big savings in power. Lower the voltage by half
and power dissipation drops to one-fourth of its former value.
But lowering the operating voltage lowers the maximum oper-
ating frequency, which has the undesirable consequence of
decreasing performance. The fastest microprocessors for laptop
computers are a couple of speed grades below the microproces-
sors for desktop computers because the laptop microprocessors
need to run at lower frequency and at a lower voltage to extend
battery life. The latest designs run faster when the laptop is con-
nected to an external power source.

From the above formulas for performance and power, we
can see the microprocessor’s dilemma. To increase performance,
the microprocessor wants to run at higher frequencies, but to
limit power dissipation it wants to run at lower frequencies.

How we’re getting there (from engineering designs for
the present to designs for the future) derives from the meth-
ods engineers use. Engineers design with microprocessors
because microprocessor-based design methods are simpler
and lead to cheaper solutions than other methods and
because that’s what they learned in school. Selecting a micro-
processor and programming a solution is more efficient for
the designer than direct hardware implementation, conserv-
ing the critical resource (the engineer’s time). But micro-
processor-based designs are significantly less efficient than
pure hardware-based ones.

4 Dynamic Silicon

Fig. 3. The microprocessor makes engineering
problem solving cheaper and easier.

I’m sure you’ve heard some variation of the joke about the
engineer and the physicist: they are both trying to reach some
goal, but at each iteration are only allowed to cover half of the
remaining distance. The physicist gives up knowing that it will
never be possible to reach the goal, since some distance will
always remain. The engineer gets pretty close and declares, “that’s
enough for practical purposes; I’ve reached my goal.” This illus-
trates an essential difference between an engineer and a scientist.
The scientist may strive for the perfect solution. The engineer,
knowing the enormous cost of achieving a perfect solution, is sat-
isfied with a good solution. It is a tradeoff between effort and effi-
ciency. A good engineer knows how much inefficiency the solu-
tion can afford in minimizing the design effort.

Direct hardware implementation leads to efficient designs
(see fig. 4). The engineer converts the application to an algo-
rithm that is implemented directly in hardware. There’s little
loss of efficiency in that process, but it is more taxing for the
designer. A process based on a microprocessor is simpler. It’s
simpler to write a high-level language program than it is to
design custom hardware and a custom state sequencer to
accomplish the same task and it’s easier to correct errors too.

Microprocessor-based implementations lead to less effi-
cient designs (compare the steps in fig. 4 with the steps in fig.
5). In a microprocessor-based application, the engineer must
consider the microprocessor’s architecture in selecting the
algorithm for implementing the application (a floating-point-
intensive algorithm won’t run well on a microprocessor that
doesn’t have floating-point instructions). The engineer then
codes the algorithm in a high-level language such as C++ or
Java. A compiler converts the high-level language into binary
instructions the microprocessor will understand. Efficiency is
lost at each stage of the process.

Today’s designs for leading-edge mobile applications are
based on microprocessors and on digital signal processors
(DSPs). Designs can’t be based completely on microproces-
sors and DSPs, however, because the implementation would
use too much power to get the necessary performance, so
designers compromise by moving some functions into hard-
ware. Application-specific integrated circuits (ASICs) imple-
ment compute-intensive and power-hungry functions, so the
microprocessor or DSP can run at a lower voltage and at a
lower frequency, saving power.

Why that won’t work
Consumer expectations are rising. We want our cell phones

and other wireless access devices to work anywhere. We don’t
want to be concerned with frequency bands and protocols. We
want to be able to make and receive calls anywhere. We want
universal paging. We want real-time stock quotes. We want
wireless access to email. And we want it today. Since the expen-

Special Report 5

Fig. 4.
Direct-hardware
implementation leads
to efficient designs.

Fig. 5. Microprocessor-
based implementations
forfeit efficiency in
translations.

Direct-Hardware Implementation

Computer Implementation

sive, difficult-to-change installed base is a dog’s breakfast of pro-
tocols and frequencies, it’s left to the engineers to implement
multi-band, multi-mode handsets. That requires more perform-
ance from the microprocessor and it requires a separate ASIC for
each protocol (and sometimes different DSPs for different pro-
tocols), increasing the cost of the design and adding to the num-
ber of components in the bill of materials. More components
and more functions burn more power.

Designers can count on progress in semiconductor fabri-
cation for some improvement, but we’re running out of room
lowering the voltage (some microprocessors specify less than
a volt in low-power applications—from five volts a few years
ago—getting close to where the chip will quit working). When
we run out of voltage, we’ve lost most of our control in improv-
ing the performance of microprocessor-based designs.
Performance increases directly with clock frequency, but so does
power dissipation. In the world of microprocessors, more com-
plexity and higher frequency have been the path to more per-
formance. What we need is a way to improve the efficiency of
the design so we can do the same work at a lower frequency.

The microprocessor began as an embedded element and
was soon converted to a performance-oriented design (with
the current designs appearing as the CPU in computer sys-
tems and the older generations relegated to embedded appli-
cations). It is as if we began a journey in San Francisco (the
first embedded systems) attempting to optimize a path to
New York (the ultimate-performance microprocessor). We
have reached Kansas City (today’s leading-performance
microprocessor) and then changed our goal to Los Angeles
(the ultimate in power efficiency). We need to optimize the
path from San Francisco to Los Angeles, but we insist on
keeping Kansas City (microprocessor-based design) on the
route. There may be a better way.

New approach: dynamic logic
The conceptual model for a programmable logic device is

that it is a chip with two layers. One layer is an array of logic ele-
ments and a general interconnect-structure (wires). The second
layer is a personalization memory (see fig. 6). The bit pattern
loaded into the personalization memory controls connections
between the logic elements and the interconnect-structure. By
loading different bit patterns into the personalization memory it
is possible to connect or not connect logic elements to build arbi-
trary logic functions (within the limits of the PLD’s capacity). In
this sense, PLDs are programmable—the function that the chip
performs is different depending on the ones and zeroes in its per-
sonalization memory. TTL built complex electronic circuits by
physically connecting logic building blocks; PLDs build complex
electronic circuits by programmably connecting logic building
blocks. The design potentially has the efficiency of a direct hard-
ware implementation, but the component is programmable.
Being programmable, one chip fits a broad range of applications,
so, like the microprocessor, the PLD can achieve the Holy Grail
of the semiconductor business: the high volume that leads to
cheaper, faster parts.

My diagrams, simplified as they must be for clarity, are a
poor caricature of the devices themselves. High-end contem-
porary PLDs contain tens of millions of transistors.
Personalization memory can be more than ten million bits
(each bit implies a transistor switch controlling a part of the
reconfigurable function as shown in fig. 7, above).

The bits in the personalization memory can intercon-
nect more than fifty thousand logic elements (about 2.5
million logic gates plus a half-million bits of on-chip mem-
ory) such as that shown in fig. 8. The logic element itself
can be configured into a variety of functions (the look-up
table in fig. 8, for example, can be any function of four vari-
ables) and can be aggregated into larger functions such as
adders, multipliers, encoders, decoders, and engines for
direct encryption and decryption.

In the past, PLDs suffered from a number of seemingly crip-
pling problems that prevented their use in leading-edge mobile
applications. General-purpose PLDs had more overhead than

6 Dynamic Silicon

Fig. 6. The programmable logic device (PLD) has logic and wires on
one level and personalization memory on a second level.

Fig. 7. The personalization memory forms the connections that
build arbitrary circuits.

the U.S. government—about twenty overhead transistors for
every transistor doing real work. PLDs were slow. Their pro-
gramming was all or nothing (no partial configuration and no
background preloading of the next personalization pattern). It
took a long time to load the personalization memory. They had
limited capacity. They were expensive.

Semiconductor fabrication improvements solve many of
these problems (speed, capacity, cost, and programming time).
The first microprocessors, with a few thousand transistors, exhib-
ited impressive capabilities. Each logic element in a modern PLD
(see fig. 8) contains about a half as many transistors as the earli-
est microprocessors did. Think of the power of fifty thousand
logic elements on a single chip—it’s the raw logic equivalent of
about 25,000 early microprocessors.

But, you will hear, “PLDs are slow and microprocessors are
fast.” Don’t get hung up on the clock frequency. Comparing
frequency of operation between a microprocessor and a PLD is
like comparing blade speed on the Huffy Lawn King to screw
speed on the QE II. Blade speed on the Huffy trims grass before
it can bend out of the way; the QE II’s screw pushes tens of
thousands of tons of mass through the water. Frequency and
blade speed do not measure the work that is being done.

In addition, many of programmable logic’s shortcomings
are not fundamental, but rather are an outgrowth of the
requirements of mainstream applications for the devices.
Programming times, for example, don’t have to be slow; man-
ufacturers put the chips in a special mode and quickly load
configurations for testing. Configuration loading could be
quick if there was demand from high-volume customers.
Partial configuration and background configuration features
are absent because there hasn’t been great demand for them,
not because they are difficult or impossible to provide.

The PLD market has been growing rapidly for at least the
last fifteen years (at about thirty-five percent per year). The
leading PLD manufacturers, Altera (1983) and Xilinx (1984),
have been growing as rapidly as they can to support the avail-
able market. The PLD manufacturers are trapped by their
customers, whose designs plug into the power grid (Altera
and Xilinx are focused on the performance segment and are

not aimed at leading-edge mobile applications). Altera and
Xilinx are growing with their customers and they are moving
up market to faster, larger components. There’s an opportu-
nity to exploit the potential efficiency of the PLD for leading-
edge mobile designs.

Imagine that you are in Florence Italy, looking east from the
south bank of the Arno River, at the scenic sight of the Ponte
Vecchio. There’s a light fog, but you want a picture. If you have the
right filter, you can get a good picture in spite of the fog. If you
have my luck, however, as you lean out for that perfect shot your
lens filter pops off and sinks in the Arno. You take the picture with-
out the filter. You know you can later download it to a computer
and fix it with Photoshop. This example illustrates the issue of
energy efficiency: the lens filter processes the entire scene in real
time for no net energy cost (the lens filter doesn’t need batteries).
If you forget the filter and process the picture in a computer,
Photoshop will process each pixel in the image serially. In fact,
Photoshop will look at a window of pixels around each objective
pixel to calculate the value of each output pixel. It will take the pro-
gram at least thousands of instructions to process each pixel. The
PC will process several million pixels one at a time. This is not an
efficient process and, as we have already demonstrated, the under-
lying microprocessor-based implementation is also inefficient.

The lens filter and the microprocessor-based implementa-
tion represent two extremes in the spectrum of information
processing (the lens filter does a lot of work for not much evi-
dent effort while the computer exerts considerable effort for

Special Report 7

Fig.º 8. The logic element in a PLD is the building block of arbitrary circuits.

Programmable Logic Implementation

Fig. 9.
A programmable -logic
implementation can be
more efficient than one
based on a microprocessor.

Logic
Element

the same work). Transformation equations represent the effect
of the filter on the image passing through it. Since we know the
equations of transformation, we can build a direct hardware
implementation of their representation using a PLD (to the
limit of its capacity). This concept translates to the cell phone or
to the intelligent mobile assistant. Appropriate logic is “paged”
into the PLD to implement temporal, demand-driven func-
tions. The dynamic-logic implementation may be able to do at
50 kHz what the microprocessor-based implementation needs
500 MHz to accomplish. Since power dissipation is propor-
tional to the clock frequency, this translates into dramatically
lower power in the dynamic-logic implementation. In leading-
edge mobile applications, conservation of clock frequency
becomes the first measure of efficiency.

Direct hardware implementations can be thought of as a combi-
nation of fixed hardware and fixed algorithms. Direct hardware
implementations are the most efficient and are the least flexible.
Microprocessor-based implementations combine fixed hardware
with dynamic algorithms. Dynamic-logic implementations combine
dynamic hardware with dynamic algorithms. Dynamic logic is a break-
through problem-solving method just as the computer was a break-
through problem-solving method. Dynamic logic is more efficient
and more flexible than a microprocessor-based implementation.

Challenges to dynamic logic
There are seemingly insurmountable barriers to commercial

success for dynamic-logic implementations. First, there’s no dra-
matically successful commercial proof of concept for the proposi-
tion that a dynamic-logic implementation is substantially more
efficient than a microprocessor-and-DSP-based implementation.
This makes it hard for a startup to obtain funding. Venture capi-
talists are sheep: either all will invest or none will. There are few
true pioneers in the venture community, their reputation
notwithstanding, VCs are risk-averse. Further, the VCs’ due dili-
gence experts are likely to come from an application-related
mainstream background with conventional design biases favoring
direct hardware implementation or microprocessor-based imple-
mentation; they’re not likely to understand or appreciate a radi-
cally different design method. And Wall Street? We may as well
be talking about what kind of cheese the moon is made of.

Second, engineering skill in dynamic-logic design methods is
scarce. Practicing engineers use direct hardware design methods and
microprocessor-based design methods for new implementations.
Universities train engineers in logic design and they train them in
microprocessor- and computer-based design methods. (Ironically,
universities use PLD-based development systems to teach both
logic design and computer design, but they do not teach dynamic-
logic design, so the PLD is contributing to the entrenchment of
competing design methods.) There’s no widespread understanding
of dynamic-logic design methods, there’s no expertise for instruc-
tion, and there’s no apparent demand for the skill.

A dynamic-logic implementation will be expensive and
time-consuming to develop (the long development time makes
recruiting harder and its high cost makes funding harder).

Building the partnerships for successful market penetration will
be challenging because new designs will attempt to displace
powerful entrenched companies.

How it might happen
Barriers to commercial success prevent overnight conversion to

dynamic-logic design methods, but it can still happen. One com-
pany must collect one design team with dynamic-logic design
skills and it must pioneer its way to a commercially successful
proof of concept. If that company gains a substantial competitive
advantage, others will follow. It’s possible. A dynamic-logic imple-
mentation of a cell phone would be able to track protocol changes
through over-the-air upgrades. Protocol changes would no longer
mean another landfill of cell phones as the provider upgrades soft-
ware and ASICs in its designs to accommodate transitions. That
may be an incentive for service providers. The ability to adapt to
different protocols and multiple bands efficiently would be attrac-
tive both to the consumer and to the service provider. Finally, the
extended battery life of a dynamic-logic implementation would be
attractive to consumers.

I met with Jaime Cummins and John Watson several years ago,
before they started QuickSilver Technology, Inc. I met with them
because I wanted to introduce them to some venture capitalists who
I thought should be interested in funding their breakthrough idea
(it was part of my education concerning sheep-like behavior and
risk-aversion among venture capitalists). John and Jaime struggled
for years looking for funding, until they encountered Gordon
Campbell. “Gordy” is a venture capitalist, but he isn’t an MBA-type
venture capitalist; he’s a visionary engineer who founded and ran
Chips and Technologies (the first fabless semiconductor company)
and now runs Techfarm. He knows a breakthrough idea when he
sees one: Techfarm is funding QuickSilver.

QuickSilver is building a chip set for a next-generation cell
phone using dynamic logic (QuickSilver calls this an Adaptive
Computing Machine). Logic for each of the phone’s protocols and
functions can be “paged” into the chip’s programmable logic, elim-
inating the need for a digital signal processor, ASICs, and possibly
even the usual microprocessor. Functions that are not paged into
the chip’s gates do not use power. Efficiency improves because the
implementation is more direct for each function than it is in a DSP-
based implementation. The DSP-based implementation runs a
variety of functions on a fixed set of resources, giving up efficiency
for the sake of simplifying the programming and the hardware
resources. The dynamic-logic solution gives up efficiency in “pag-
ing” functions into the programmable logic. QuickSilver’s bet is
that paging the logic into the chip will cost less power than having
logic that is always resident but mostly idle. Compare the block dia-
gram of fig. 10 with fig. 11, for example.

QuickSilver will circumvent the inefficiencies of PLDs
designed for the commercial prototyping market by designing its
own devices to suit just the anticipated range of applications.
QuickSilver’s Adaptive Computing Machine (ACM) will still be a
PLD, but it will be designed for rapid partial reconfiguration to
accommodate “paging” of its functions. QuickSilver’s ACM will

8 Dynamic Silicon

allow background reconfiguration while the device is operating. It
may even cache high-use logic functions for more efficient paging
(though this would cost valuable power). In addition,
QuickSilver’s ACM, since it is not being designed for general-pur-
pose prototyping, can be designed with much less overhead than
a commodity PLD, which typically has about twenty transistors
of overhead for each transistor doing real work. In addition, the
peripheral circuitry can be designed to suit a single system rather
than being the general-purpose, universally configurable I/O pad
ring required by PLDs for prototyping applications.

One application for QuickSilver’s ACM is a mobile device that
could be a multi-mode, multi-protocol cell phone. This phone might
allow roaming among protocols such as AMPS, CDMA, TDMA,
and GSM and even among frequency bands. Since it is “adaptive,” it
could be updated to the third or fourth generation standards as they
evolve. In addition to the cell phone functions, the device could
accommodate a variety of other functions such as calendar, calcula-
tor, email, GPS, and MP3. It might ship with a standard set of func-
tions that could be “paged” from ROM and a bank of flash memory
to accommodate changes and for installation of new functions. These
changes and new functions might be loaded over the air interface,
keeping the device functional and current in the field much longer
than devices based on ASICs and ROM programs.

In leading-edge mobile applications, such as
QuickSilver’s example mobile device, the electron-
ic system must meet the conflicting demands of
compute-intensive algorithms and of long battery
life. The processing requirements of these applica-
tions can be demanding across a range of tasks.
The cell phone, for example, must do call setup,
call teardown, encoding, decoding, and a variety of
protocol processing tasks. These applications typi-
cally require several application-specific integrated
circuits, a digital signal processor, and a micro-
processor. The world has not converged on a sin-
gle cellular standard and is not likely to any time
soon, so there is demand for multi-protocol cell
phones. A separate ASIC typically supports each
protocol. Increasing popularity of email and the
demand for wireless connection to the Internet are
driving these functions into the cell phone as well.
Each of these added functions increases processing
complexity and makes extending battery life more
difficult. Derivatives of the programmable logic
device offer a way out of this difficult situation.
QuickSilver’s Adaptive Computing Machine uses
dynamic logic. That is, ACMs implement dynam-
ic algorithms and dynamic resources.

QuickSilver’s ACM can be significantly more
efficient than a DSP-based implementation of the
same functions. Resources on the chip can be allo-
cated to the limit of availability for parallel calcu-
lation, since the resources are not dedicated to par-
ticular functions, as they would be in a micro-
processor, DSP, or an ASIC. A large fraction of the

fixed resources in a microprocessor or DSP may be idle at any par-
ticular time. DSPs generally work on data in multiples of a byte.
Dynamic-logic implementations can work on any data width (the
width can even vary with time to suit the needs of the problem).

As semiconductor fabrication improves, DSPs and micro-
processors are built with ever more fixed resources and running
at ever higher clock speeds, so they can tackle ever more com-
plicated functions. But, while adding resources and increasing
the clock rate improve computational ability, they don’t improve
the computational efficiency of these processors. Each of the
functions “paged” into a dynamic-logic implementation makes
efficient use of the resources it needs and is then overwritten by
the next function “paged” into the chip. Computational effi-
ciency is high, so power dissipation is low. A dynamic-logic
implementation can improve power dissipation by a factor of
two to ten (compared with a DSP-based implementation) and
can improve performance by a factor of ten to one hundred.

Nick Tredennick and Brion Shimamoto
7 March 2001

Special Report 9

Intelligent Mobile Assistant
Microprocessor, DSP, and ASIC Version

Fig. 10. All functions are resident in a microprocessor-based mobile assistant.

Fig. 11. The dynamic logic version of the mobile assistant “pages” functions as needed.

Intelligent Mobile Assistant
Dynamic Logic Version

DynamicSilicon
Monument Mills

Housatonic, MA 01236
www.dynamicsilicon.com

Copyright 2001, Gilder Publishing, LLC

Dynamic Silicon Companies
The world will split into the tethered fibersphere (computing, access ports, data transport, and storage) and
the mobile devices that collect and consume data. Dynamic logic and MEMS will emerge as important
application enablers to mobile devices and to devices plugged into the power grid. We add to this list those
companies whose products best position them for growth in the environment of our projections. We do
not consider the financial position of the company in the market. Since dynamic logic and MEMS are just
emerging, several companies on this list may be startups. We will have much to say about these companies
in future issues.

Altera and Xilinx (ALTR http://www.altera.com) (XLNX http://www.xilinx.com)
Altera and Xilinx together dominate the programmable logic business, with almost 70 percent of the CMOS PLD market.
Both companies are aggressive and competitive. Sixty-six percent of Altera’s revenue comes from the rapidly growing com-
munications segment (Telecosm companies) and an additional 16 percent comes from the electronic data processing (EDP)
segment. Altera and Xilinx are positioned to be major suppliers in tethered applications such as the base stations that sup-
port mobile devices.

Analog Devices (ADI http://www.analog.com)
Analog Devices is a leader in analog electronics for wireless RF and communication, MEMS for automotive applications
(accelerometers, pressure sensors, transducers), and in DSPs.

ARC Cores (ARK (London) http://www.arccores.com)
ARC Cores makes configurable processor cores. Configurable processors allow the application engineer to adapt the processor’s
instruction set to the requirements of the problem. Conventional microprocessors have fixed instruction sets.

Cypress (CY http://www.cypress.com)

Cypress Microsystems builds components for dynamic-logic applications. Cypress also builds MEMS and is a foundry for MEMS.

QuickSilver Technology, Inc. (* http://www.qstech.com)*

QuickSilver has the potential to dominate the world of dynamic logic for mobile devices (untethered). While many com-
panies work on programmable logic and on "reconfigurable computing" for tethered applications, QuickSilver builds adap-
tive silicon for low-power mobile devices.

SiRF (* http://www.SiRF.com)*
SiRF builds RF GPS chips for the mobile market. It is a world leader in development of integrated GPS receivers.

Transmeta (TMTA http://www.transmeta.com)
Transmeta makes new generation microprocessors that use closed-loop control to adapt to problem conditions in an x86-
compatible environment. This enables Transmeta’s microprocessors to save power over conventional microprocessors from
AMD and Intel. The base instruction set is not available to the application engineer.

Triscend (* http://www.triscend.com)
Triscend builds microcontrollers with configurable peripheral functions and with configurable inputs and outputs. Triscend
helps consolidate the microcontroller market into high-volume, standard chips.

