
hy are PLD companies like Altera (ALTR) and Xilinx (XLNX) on our list while ASIC companies
like LSI Logic (LSI) are not? In electronic design, application-specific integrated circuits (ASICs)
connote high performance, high density, and low cost for high-volume uses. Think DVD player.

Programmable logic devices (PLDs) connote flexibility, low performance, and high cost for prototyp-
ing. Think latest Cisco (CSCO) router. Continuous improvements in PLDs raise their performance and
lower their cost, increasing the uses for which PLDs and ASICs compete. ASIC vendors are adding pro-
grammable logic to their chips. The PLD vendors are adding “hard” macros. Are these businesses con-
verging? Or are companies like Altera and LSI Logic practicing “diworsification?” Altera, a PLD compa-
ny, is making chips that can’t be changed, and LSI Logic, an ASIC company, is making chips that can be
changed. What strategy will dominate? We’ll develop the insight to answer these questions by tracing the
evolution of digital design from the introduction of integrated circuit building blocks—“IC macros.”

Each technology wave changes the designer’s job. As Moore’s law drives more transistors onto the chip, the
design process changes. The productivity and the skills of the designers change. The level of abstraction for
the engineer changes. By level of abstraction, I mean the units that are the building blocks for the transla-
tion of the written specification into the physical hardware. In the early days of digital design, the level of
abstraction was the inverter and the AND gate. Working with inverters and AND gates was simpler and
quicker than designing with individual transistors, resistors, capacitors, and other “discrete” components.
As I trace the evolution of digital design, I’ll point out changes in the design process, designer productiv-
ity, engineering skills, level of abstraction, verification and debug methods, and changes in the flexibility
and capability of the end systems.

CEOs vote themselves big compensation packages for this kind of strategic insight: “We need a system
that’ll knock the socks off the competition!” This “mission statement” goes to “system architects” who write
the specification for the system. System architects propose a
block diagram like the one in fig. 1 and they write an English-
language description of what it does. The specification includes
the instruction set for the central processing unit (CPU).

The plain-English description of what the CPU does is
called the “programmer’s reference manual.” The 116-page
manual for Altera’s Nios embedded processor, for example, lists
each of the processor’s instructions, gives its representation as
ones and zeroes, and tells the programmer what the instruction
does in English. The instruction labeled “SUB,” for example,
describes the process that “subtracts the contents of [register]
RB from [register] RA, [and] stores the result in RA.”

The logic design engineer translates the English descrip-
tion of instruction behavior into the data paths and control
circuits that enable the Nios CPU to recognize “000010
00101 00100” as an instruction to subtract register R4 from

DynamicSilicon
The Investor's Guide to Breakthrough Micro Devices

Published by
Gilder Publishing, LLC

Written by
Nick Tredennick

The Evolution of Digital Design

W

In This Issue:
IC-macros . . . 2
PLDs and ASICs . . . 4

Vol. 1, No. 10
October 2001

Market, engineering drivers . . . 6
Application-oriented PLDs . . . 7

Fig. 1. A system block diagram is the starting
point for a design.

register R5 and to put the result in R5. The logic design
engineer bridges the gap between the system’s functional
description and its physical realization.

Integrated circuit macros. Engineers built systems
for the surging minicomputer market of the ’60s and
’70s with IC macros. Fig. 2 shows the result of mapping
the diagram of fig. 1 into an IC macro implementation.
This was the pre-microprocessor era, so the CPU was
built of IC macros and occupied its own board. Its ran-
dom access memory (RAM, labeled “M” in the figure)
occupied another board. The storage controller, display
controller, and I/O (input/output) controller were all
custom designs. Like the CPU, each occupied its own

board and was its own unique design.
IC macros changed the designer’s job. The logic

design engineer converted the English-language descrip-
tion of the system’s behavior (including the CPU’s
description) into IC macros. Productivity improved
dramatically because the engineer did not have to worry
about individual circuits and transistors. The IC macros
connected to each other in standard ways. Each IC
macro can be hundreds or thousands of transistors.
Nothing was supplied except the collection of IC
macros to be used as the building blocks. The engineer
had to construct the registers, buses, arithmetic units,
and controllers. There was no system simulation; the
engineer debugged with an oscilloscope. It took
redesign to correct errors. The IC macros did not need
either circuit or logic simulation, since they were com-
mercially available blocks that were previously verified.
The end system was inflexible.

Microprocessors. Intel introduced the first com-
mercial microprocessor—CPU on a chip—in 1971, but
it wasn’t until the mid to late ’70s that microprocessors
invaded computer systems designs. The microprocessor-
based workstation market of the ’80s wiped out the IC
macro-based minicomputers. The minicomputers, with
their custom and proprietary CPU designs, gave way to
workstation designs based on commercially available
microprocessors. Sun Microsystems built a great busi-
ness based on this strategy.

Moore’s law shrunk the system to fig. 3 and it made
the system more capable; the microprocessor changed
the designer’s job. The CPU (microprocessor) provided

2 Dynamic Silicon

Editors Nick Tredennick
Brion Shimamoto

Publisher Lauryn Franzoni
Web Editor Jorin Hawley
Designer Julie Ward
Subscription Services Melissa McNally
Executive Editor Richard Vigilante
President Mark T. Ziebarth
Chairman George Gilder

DynamicSilicon

Dynamic Silicon is published monthly by Gilder Publishing, LLC.
Editorial and business address: 291A Main Street, Great Barrington, MA
01230. Editorial inquiries can be sent to: bozo@gilder.com. © 2001
Gilder Publishing LLC. All rights reserved. Permissions and reprints:
Reproductions without permission is expressly prohibited. To request
permission to republish an article, contact bhahn@gilder.com or call
413-644-2101. To subscribe call 800-229-2573, e-mail us at dynamic-
silicon@gilder.com, or visit our website at www.dynamicsilicon.com

Fig. 2. (left) The integrated circuit enabled construction of complex
systems. The small rectangles inside each subsystem are IC macros.

Fig. 3. (above) The microprocessor brought the computer’s programming
model to embedded systems and consolidated IC macros.

the controller for each subsystem design. The engineer
no longer built a custom controller for the storage sub-
system, for example. The design process changed from
one of mapping a specification into IC macros to one of
programming the specified behavior on an embedded
CPU. The subsystems still used IC macros to build data
paths, to build interfaces to other subsystems, and to
provide logic-gate odds and ends (called “glue logic”)
that tied the system together.

Designing subsystems with CPUs brought the com-
puter’s programming model to embedded systems. This
changed the design process in two ways. First, a sub-
stantial part of the design process became program-
ming. Second, the engineer no longer designed the con-
trol structure of the system—it came as the CPU. The
engineer built the necessary data paths and programmed
the subsystem behavior. Moore’s law and the CPU acted
to consolidate IC macros thereby shrinking the system.

Shifting to a programming model has significant con-
sequences. First, there are more programmers than con-
troller designers, opening subsystems to more uses.
Second, programming tools developed in computer envi-
ronments apply in this domain, extracting value from
investment elsewhere and raising the level of abstraction
(making the problem-solving engineers more produc-
tive). Third, the programming environment permits sim-
ulation and debugging at a level that’s more efficient than
using an oscilloscope. Engineers are able to write and
debug software on general-purpose computer systems
before the subsystem hardware is built.

The system is flexible. Programming revisions can
correct errors and allowed some migration of function
for fielded systems.

Microprocessors displaced IC macros in designs
because microprocessors simplified the engineer’s job by

providing the controller and by
bringing programmed solu-
tions to the embedded environ-
ment. Microprocessors do not
displace IC macros because
they are faster. They aren’t. IC
macro-based designs can be
faster because they implement
functions more directly. If per-
formance is primary, the micro-
processor loses. Most electronic
applications, however, are cost
sensitive; they are not primarily
concerned with performance.
Since the microprocessor is

programmed, the design can be cheaper; since there are
fewer chips, it can be cheaper to build.

Microcontrollers and ASICs. IC macros can’t sur-
vive Moore’s law. Once a chip becomes pad limited, it
doesn’t get smaller, faster, or cheaper, so it can’t compete
with chips that do (Dynamic Silicon, Vol. I, No. 3).
Commonly implemented functions (such as serial and
parallel interfaces, transmitters and receivers, counters,
and timers) migrate onto the same chip as the micro-
processor. The microprocessor then becomes a “micro-
controller” (MCU in fig. 4).

Performance-oriented functions migrate to ASICs,
displacing both IC macros and CPU program code.
Functions in the CPUs and in the MCUs retain the
advantages of programming for development and for
field revisions. ASICs add performance, reduce the part
count, and lower cost, but they are inflexible.

Engineers design, simulate, and debug functions
that map into those CPUs and MCUs on separate gen-
eral-purpose computers.

Engineers also design, simulate, and debug ASICs
on general-purpose computers. But Moore’s law has
driven the capacity of these chips to millions of gates.
The effort required to design, simulate, and debug
increases at the same rate as the design complexity. For
example, engineers care about three levels of simulation:
function, logic, and circuit.

Simulating circuits, at a “black box” level, on a com-
puter is feasible. Simulating circuits at their ones and zeros
(logical) level is now borderline feasible. Circuits have
become so complicated that simulating their logical opera-
tion takes huge amounts of computing power. It is better
to recreate the logic of circuit using PLDs. The PLD-based
simulation runs thousands of times faster than a comput-
er-based one. Simulating large circuits’ electrical behavior

October 2001 3

Fig. 5. ASICs and PLDs consolidated all
functions in the original block diagram.

Fig. 4. ASICs and microcontrollers consolidated
board-level functions onto the chip.

isn’t practical. This is an ongoing problem for ASICs.
ASICs are large custom circuits. PLDs consist of standard-
ized electrical components that are much easier to verify.

System on a chip. By now the pattern is clear:
Moore’s law drives component consolidation. More
stuff going on in one place. Consolidation changes the
design methods and it simplifies the skills required of
designers (increasing the pool of eligible designers as the
level of abstraction rises). Consolidation changes design
verification and debugging procedures and it changes
the capability and the flexibility of the resulting system.

Microprocessors consolidated IC macros.
Microcontrollers and ASICs further consolidated IC
macros. In the current phase (fig. 5), logic chips swallow
the subsystems of the system block diagram. IC macros,
CPUs, MCUs, and the functions from last generation’s
ASICs all fit on a single chip.

If you are a CPU or MCU vendor, such as Triscend or
Cypress Microsystems (CY), your point of view is that the
CPU or MCU is sucking in all of the ASICs and IC macros
around it. If you are a PLD or ASIC vendor, such as Altera
or LSI Logic, your point of view is that the PLD or ASIC is
sucking in the CPU and IC macros around it. The point of
view has bearing on market positioning and on the applica-
tion space for products, but the groups face similar transi-
tions. In microprocessor and ASIC implementations, where
the CPU and the ASIC are independent chips, the value of
the CPU or the ASIC is in the silicon. In the system-on-a-
chip implementation, the value has migrated from the sili-
con to the design database for each function block (e.g., fig.
5’s display controller, storage controller, or CPU).

The designer’s job evolves from building interfaces among
chips on a board to building interfaces among databases of
functions that will be implemented on a single chip.

For microcontroller and ASIC designs and for system-
on-a-chip designs, the PLD offers an alternative to the
ASIC. As tradition has it, the engineer builds a PLD-based
prototype for initial test and debug, and perhaps for initial
production, and then converts the PLD to an ASIC for
high-volume production. If only a few units will be built,
it may be cheaper to build PLD-based systems and to skip
the ASIC design. Where’s the cost crossover between low-
rate production with PLD-based systems and high-vol-
ume production with ASICs?

PLDs and ASICs
Fixed and variable costs. Suppose you are building

a system and must choose between an ASIC-based
implementation and a PLD-based implementation. Fig.
6 shows the tradeoff. The vertical axis is the total com-

ponent cost of ASICs or PLDs to build a number of sys-
tems. The horizontal axis is the number of systems built.
The steep line beginning at the origin is the cost to
implement the system with PLDs. The modestly slop-
ing line beginning at “fixed costs” is the cost to imple-
ment the system with ASICs.

Your engineers design the system by mapping the sys-
tem’s functions into logic that will be implemented either
in a PLD or in an ASIC. If the system is PLD-based, the
engineers buy standard PLDs from the manufacturer or
from the distributor. Since the manufacturer amortizes
the cost of designing the chip, the customer sees only a
unit price. If the system is ASIC-based, the engineers
produce a design file and your company contracts with an
ASIC foundry to make the IC masks and to build the
chips. The costs that are independent of the number of
chips the foundry builds are called non-recurring engi-
neering (NRE). The design work for either implementa-
tion is about even. For the PLD implementation, there is
a high component cost and no NRE. For the ASIC
implementation, there are fixed costs, but the chips are
individually cheaper than PLDs. For fig. 6, I assumed a
PLD to be six times the cost of an ASIC.

If you build only tens or hundreds of systems, the
PLD implementation will be cheaper (the shaded area
in fig. 6) because the ASIC’s NRE will be spread over
only a few systems. Suppose the ASIC’s NRE is
$200,000 and the chips are $4. An equivalent-capacity
PLD might be $24. If you build only 1,000 systems, the
NRE contributes $200 to the cost of each chip, so the
ASIC implementation is more expensive than the PLD
implementation. If you build 100,000 systems, the
NRE contributes only $2 to the cost of each chip, mak-
ing the ASIC cheaper. To keep the analysis simple, I
assume no volume discounts. I also assume that the
engineer’s ASIC design file builds a working chip on the
first try. (We’ll make adjustments later.) Fig. 6 seems a
reasonable analysis, but it has a shortcoming: it’s static.

PLDs, ASICs, and time
You won’t buy all the components and build all the sys-

tems in a week. It’s likely that you will buy components
incrementally and build systems over two years or so.
Buying PLDs incrementally over two years is easy; in fact,
since component costs drop about 60% per year, you’ll buy
PLDs just in time to build the systems to take advantage of
the latest price reductions. For the ASIC implementation,
the NRE is an up-front cost and the lifetime supply of
ASICs may be contracted at the project’s start. The ASIC’s
per-chip cost won’t be decreasing at 60% per year. Your

4 Dynamic Silicon

foundry won’t want to dribble your ASIC through its line
over your product’s market life. The foundry will want to
crank up the line and deliver all your chips in a single run
so that it can reconfigure its production line for the next
customer’s product. Suppose you buy enough chips for a
sales forecast of 25,000 systems. If you sell only 5,000, then
you throw out 20,000 ASICs you paid for. If you sell
50,000, you won’t be getting the second 25,000 chips at a
discount. It’s more likely to be at a premium—if the
foundry can do it at all (if it’s been two years, the foundry’s
current processes may be incompatible with your design).

Moore’s law drives the semiconductor business by
decreasing the cost for a fixed function (your design) by a
factor of two every eighteen months. Fig. 7 shows the effect
of Moore’s law on the equal-cost point between ASIC-
based and PLD-based implementations. Lines radiating
from the origin in fig. 7 represent the cost of PLDs over

time. The steepest line is 1997. By 1999, a PLD with the
same capacity was 36% of the 1997 price; in 2001, it was
36% of the 1999 price, and so on. This figure is not to
scale. The PLD cost line is falling over at 60% per year; I
compressed it to 20% to illustrate a rapid trend without
having to resort to (confusing) logarithmic scales.
Horizontal lines cutting across fig. 7 represent the cost of
ASICs. At the bottom is 1997. The 1997 ASIC line has a
slope that reflects a per-chip cost that is a sixth of the 1997
PLD’s per-chip cost. The slopes get flatter in successive
years as per-chip costs drop. Costs start higher each year
because the NRE rises with process complexity.

The equal-cost point between ASICs and PLDs is
the intersection of the ASIC cost line with the PLD cost
line for each year. The point isn’t just moving to the
right in favor of PLDs, it’s accelerating to the right. It
accelerates because the ASIC cost line is rising and the
PLD cost line is falling over. Each year favors PLD-
based implementation for higher-volume applications.
As they say in infomercials, “but wait, there’s more.” To
this point, I’ve treated ASIC-based design as the equal
of PLD-based design. I sort differences into technology
drivers, market drivers, and engineering drivers.

Technology drivers
Moore’s law, mask cost, chip cost, and intellectual

property are technology drivers.
Moore’s law. Moore’s law works for the PLD and it works

against the ASIC. Think of the application space for PLDs
and ASICs as a distribution running from a few thousand
gates to millions of gates. ASICs own the high-capacity
applications; PLDs own the low-capacity end; and ASICs
and PLDs compete for the (vast majority of) applications
in the middle. Moore’s law raises the capacity of the PLD
and of the ASIC. Since the PLD is coming up from lower
capacity, it is encroaching more on ASIC applications.
ASIC applications move up as the scale itself expands
(applications get bigger as engineering productivity
improves), but the scale isn’t expanding as fast as chip capac-
ity is rising, so the PLD is taking over ASIC applications.

Mask cost. Mask costs rise as the semiconductor
process becomes more complex and as process geometries
shrink. Rising mask costs hurt ASICs more than they hurt
PLDs. The ASIC, as its name implies, is built for a specif-
ic application, so the ASIC’s mask costs amortize across the
volume for one application. The PLD, by contrast, is a
general-purpose component, so its mask costs amortize
across the volume for its entire range of applications.

Intellectual Property. ASICs implement “hard”
core IP. Hard cores are physical circuits designed for a

October 2001 5

Fig. 6. Build a few systems and PLDs are cheaper;
build many and ASICs are cheaper.

Fig. 7. Per-chip cost of fixed function decreases over time. ASIC
NRE rises with semiconductor process complexity. The equal-cost
point moves rapidly in favor of PLD-based implementations. (Not
to scale; rates compressed for illustration.)

specific semiconductor process. PLDs (generally) imple-
ment “soft” core IP. Soft cores are logic that is designed
to download into a PLD. Soft-core IP doesn’t care
whether the PLD is implemented in a 0.18-micron or a
0.13-micron semiconductor process. For the PLD vendors,
chip sales subsidize development of IP that is then
portable to subsequent chip generations. This is not the
case for ASIC IP, which is unique to a semiconductor
process and may be unique to a customer.

A function implemented as a hard core will be small-
er and faster and will use less power than its equivalent
implemented as a soft core. But the soft core offers
portability and it offers flexibility. Flexibility is options
offered to the user to customize the macro for a partic-
ular application. A hard macro is what it is, but a soft
macro may let the user select data widths, pipeline
stages, algorithms, bus interfaces, and other options.

Market drivers and engineering drivers
System cost, performance, power, time to market,

and system flexibility are market drivers. Engineering
drivers include design ease, design cost, development
tools, designer expertise, component availability, and
the cost of errors.

Time to market. PLDs have the advantage in time
to market. Even if the design is to be based on ASICs,
there is likely to be a PLD-based prototype. If the sys-
tem is PLD-based, production systems are close behind
the PLD prototype.

System flexibility. If you’re sure of selling millions of
copies within a short time and you’re sure there will be
no design changes, the ASIC will be cheaper. If per-
formance is paramount, the ASIC will be faster. PLD-
based designs are the embodiment of flexibility.

Design ease. With PLD-based designs, engineers
can add system features in increments. PLD-based
design, rather than relying on black-box or on logic
simulation, builds the functions and configures the
PLDs that are the chips of the end system. The engineer
can run the implementation for debugging. Since the
function is running on programmed hardware, there’s
no penalty for evolving the design (as there would be in
building a series of incrementally improved ASICs). The
designer might implement and test basic elements of the
system before adding complex features. Complex fea-
tures can be added and tested one at a time. The ASIC
designer might do this with a black box simulation or
with a logic simulation, but cannot do so with the chip.

Component availability. In a PLD-based design,
chips are available at the project’s start. In an ASIC-based

design, chips are available at the end of the design. System
makers buy PLDs on the open market where other buyers
contribute to chip production volume and, therefore, con-
tribute to decreasing chip cost over time. If production falls
short of PLD purchases, the chips go into another project’s
system. System makers buy ASICs in contract lots. If pro-
duction falls short of purchases, the extra ASICs are thrown
out. If demand exceeds component availability, the system
maker negotiates with the supplier for another contract lot.

Cost of errors. In an ASIC-based system, the cost of an
error is most probably a new “spin” of the chip, which costs
another mask set and a few months. In a PLD-based sys-
tem, the cost of an error may be as low as the cost to send
a new configuration file to the system over the Internet.

ASICs and PLDs converge
High mask costs make developers reluctant to design

ASICs. ASIC vendors attempt to counter this trend by
offering application-specific standard products (ASSPs).
An ASSP is the equivalent of an ASIC; it is an applica-
tion-specific chip, but it is sold as a standard product
rather than to a single customer. This amortizes the
mask cost among the customers, but the disadvantage is
that the customers cannot differentiate their products
based on the ASSP’s features (as they could with an
internally designed ASIC).

Led by LSI Logic and by NEC (NIPNY), ASIC ven-
dors are beginning to offer programmable logic blocks in
ASIC designs. In an ASSP, this offers the customer a means
to differentiate features in the system implementation.

By contrast, Altera and Xilinx have huge libraries of
soft-core IP and they have components with hard-core
macros as well.

Altera and Xilinx
Bob Hartmann, Altera’s then VP of Business

Development, hired me as Chief Scientist in 1993. Altera
was a circuit design company, but, when its chips grew to
over 10,000 logic gates, Bob could see the business chang-
ing and hired a logic designer (me) with a view from the
next level of abstraction (logical blocks rather than cir-
cuits). When I left Altera a few years later, it was still a cir-
cuit-design company whose products were chips.

Recently, I visited Altera thinking that it would still be
a circuit design company, so I was shocked by the change.
Today Altera is a software and systems design company.
Altera hasn’t stopped designing chips. It still has cube
farms of competent circuit designers. Today, Altera has as
many programmers as it has circuit designers and it has
alliances with intellectual property developers.

6 Dynamic Silicon

The presentations, product overview, design tools,
intellectual property, embedded products, and its new
“HardCopy” program, reflect Altera’s current orientation
and its strategy. “HardCopy” is a bridge between PLDs
and ASICs. I’m using Altera as the example because I was
just there to get the latest information, but the discussion
applies to Xilinx as well. From an electronic components
point of view, Altera has three types of products: product-
term PLDs, general-purpose PLDs, and application-ori-
ented PLDs. Product-term PLDs and general-purpose
PLDs are the traditional business of Altera (and of Xilinx).
Application-oriented PLDs are new.

Product-term PLDs. Product-term PLDs, called
CPLDs, are low-cost, high-speed PLDs that consolidate
IC macros. These PLDs are based on EEPROM (elec-
trically erasable programmable read-only memory).
They house the design’s “glue logic.” In product-term
PLDs, Altera’s MAX 3000 and MAX 7000 series com-
pete with Xilinx’s XC9500 and CoolRunner series.

General-purpose PLDs. General-purpose SRAM
PLDs serve Altera’s traditional prototyping market. For
Altera, these are the APEX chips at the high end and the
ACEX chips at the low end. For Xilinx, it is the Vertex
chips at the high end and Spartan chips at the low end.

Application-oriented PLDs. The application-ori-
ented PLDs are a new strategic direction for Altera (and
for Xilinx). Altera’s Excalibur and Mercury products are
intended for the system-on-a-chip market. Altera is
shipping a family of Excalibur chips with an ARM 32-
bit processor core (see fig. 8). Altera has licensed the
MIPS 4Kc 32-bit processor core, and it has announced
products, but it is not shipping any MIPS-based chips.

The ARM is a hard core that includes peripherals
(trace module, interrupt controller, universal asynchro-
nous receiver/transmitter, general-purpose timer, and a
watchdog timer). The added logic also includes both
single-port and dual-port memory. The MIPS version
will be identical except that the MIPS core replaces the
ARM core and a test interface replaces the trace module.
The processor and memory are added as a strip to the
top of an EP20K100E to build the EPXA1. The
EP20K400E and the EP20K1000E extend the ’100E’s
100,000-gate logic area to 400,000 gates and to
1,000,000 gates, respectively. These become the EPXA4
and EPXA10, respectively, by including the processor
and peripherals logic and additional memory.

As shown in fig. 8, the APEX chips use scaled versions
of a common layout. The Excalibur chips modify the APEX
chips to add the logic and memory strip. Altera’s chip design
strategy is good, but there’s a problem with the product strat-

egy. A year ago Altera announced Excalibur with an ARM
processor and then promised that the MIPS-based version
would follow in the first half of 2001. Altera was also talk-
ing to Motorola about licensing a PowerPC core. There’s
still no MIPS-based Excalibur and there’s no hint of a
PowerPC. There probably won’t be any. Xilinx has licensed
the PowerPC from IBM and QuickLogic is shipping chips
with a MIPS core. It isn’t that Altera couldn’t produce these
chips or even that Xilinx and QuickLogic have introduced
chips with PowerPC and MIPS cores first. The real reason
not to ship them is that it leads to parts proliferation, which
works against Altera’s fundamental business advantage.

The fundamental advantage of the PLD makers is in
making zillions of copies of identical chips that are later
personalized for specific applications. As the PLD makers
move into the system-on-a-chip business, there’s a tempta-
tion to add hard cores to the chip to improve performance
for specific market segments. But putting hard cores on the
chip fragments chip production. Fragmenting chip pro-

duction adds to mask costs and it spreads production vol-
umes across more chip types. The soft core processor that
was 40% of the chip and ran at 66 MHz last year will soon
be 20% of the chip and will run at 133 MHz. The soft core
may seem expensive now, but it scales with semiconductor
process (as well as with design improvements and with
design tool advances) without the need for redesign. And
that’s why PLDs will succeed.

The hard-core processor and common peripherals con-
vey the same advantages to the PLD chip that the micro-
controller conveyed to board designs. The CPU brings the

October 2001 7

Fig. 8. Altera’s Excalibur chips add a strip with a
hard-core processor and peripherals and memory
to members of its APEX family.

Dynamic Silicon Companies
The world will split into the tethered fibersphere (computing, access ports, data transport, and storage) and the mobile devices that collect
and consume data. Dynamic logic and MEMS will emerge as important application enablers to mobile devices and to devices plugged into
the power grid. We add to this list those companies whose products best position them for growth in the environment of our projections.
We do not consider the financial position of the company in the market. Since dynamic logic and MEMS are just emerging, some compa-
nies on this list are startups.

* Pre-IPO startup companies. ** ARK is currently traded on the London Stock Exchange † Also listed on the Taiwan Stock Exchange
NOTE: This list of Dynamic Silicon companies is not a model portfolio. It is a list of technologies in the Dynamic Silicon paradigm and of companies that lead in their application. Companies appear on this list
only for their technology leadership, without consideration of their current share price or the appropriate timing of an investment decision. The presence of a company on the list is not a recommendation to buy
shares at the current price. Reference Price is the company’s closing share price on the Reference Date, the day the company was added to the table, typically the last trading day of the month prior to publication.
The authors and other Gilder Publishing, LLC staff may hold positions in some or all of the companies listed or discussed in the issue.

Company (Symbol) Reference Date Reference Price 9/28/01 Price 52-Week Range Market Cap.

Altera (ALTR) General Programmable Logic Devices (PLDs) 12/29/00 26.31 16.38 14.66 - 51.38 6.3B

Analog Devices (ADI) RF Analog Devices, MEMS, DSPs 12/29/00 51.19 32.70 29.00 - 93.31 11.8B

ARC Cores (ARK**) Configurable Microprocessors 12/29/00 £3.34 £0.30 £0.25 - 3.90 £108M

Calient (none*) Photonic Switches 3/31/01

Celoxica (none*) DKI Development Suite 5/31/01

Chartered Semiconductor CMOS Semiconductor Foundry 7/31/01 26.55 17.25 16.06 - 60.88 2.4B
(CHRT)

Coventor MEMS IP and Development Systems 7/31/01
(none*)

Cypress (CY) MEMS Foundry, Dynamic Logic 12/29/00 19.69 14.86 13.72 - 42.56 1.9B

QuickSilver Technology, Dynamic Logic for Mobile Devices 12/29/00
Inc. (none*)

SiRF (none*) Silicon for Wireless RF, GPS 12/29/00

Taiwan Semiconductor CMOS Semiconductor Foundry 5/31/01 19.86 9.49 8.39- 19.02 31.9B
(TSM†)

Tensilica (none*) Design Environment Licensing for Configurable 5/31/01
Soft Core Processors

Transmeta (TMTA) Microprocessor Instruction Sets 12/29/00 23.50 1.41 1.25 - 50.88 189M

Triscend (none*) Configurable Microcontrollers (Peripherals) 2/28/01

United Microelectronics CMOS Semiconductor Foundry 5/31/01 10.16 5.32 4.42 - 12.23 12.2B
(UMC†)

Wind River Systems Embedded Operating Systems 7/31/01 14.32 10.50 9.71 - 49.31 816B
(WIND)

Xilinx (XLNX) General Programmable Logic Devices (PLDs) 2/28/01 38.88 23.53 19.52 - 91.94 7.8B

Ask Nick: Don’t forget, all subscribers have exclusive access to Nick on the DS Forum. Just
enter the subscriber area of the site and log on with your questions or comments.

computer’s programming model to the chip and it provides the
controller. The CPU can boot first to load configurable functions.
A hard-core microcontroller (CPU and common peripherals) on
the PLD encourages system-on-a-chip applications. But the parts
proliferation that results from embedding a variety of hard cores
moves the PLD vendors in the wrong direction.

I’ve traced the evolution of digital design from IC macros to
the present. Technology waves change the designer’s job, but the
transitions aren’t abrupt, so the trends are difficult to see. Today,

we’re moving from microcontrollers and ASICs to PLDs. ASIC
and PLD vendors are not converging despite the appearance of
hard-core IP on PLDs and of programmable logic on ASICs. The
PLD will continue to displace ASICs and it will soon invade the
much larger markets (like your cell phone, DVD player, and PDA)
held by microprocessors and by digital signal processors.

Nick Tredennick and Brion Shimamoto
October 22, 2001

Technology Leadership

