March 2000

www.gildertech.com

Volume V Number 3

Published Jointly by GILDER TECHNOLOGY GROUP and FORBES MAGAZINE

The TeraBeam Era

OGY REPO

It is late in February in Seattle, and I am gazing through a dirty window in a small office building off Mercer Street on Capitol Hill. This is the land of fog and microsmog, drizzle and mist. Would you believe that I have a sunburn from a waterfront run this morning? Would you believe that behind this smear of window I am currently basking in the full blaze of the telecosm streaming through at 2 gigabits per second?

Catching the blast of light as it comes through the window and turning it into an incandescence of swashbuckling Sean Connery images, video teleconferencing banter, and file transfer gigabit bursts, is a pastel box the size of a flat panel computer display containing a series of ingenious inventions that reduce its cost to \$150. Can you spare a dime for a multimedia gigabit per second?

The company I am visiting is **TeraBeam**, and it commands at once the most disruptive and most redemptive technology in all communications-cheap, cellular, wireless multigigabit optics.

The terabits will come next year to a location near you. Closing the last mile gap between the wavelength division multiplexed (WDM) floods of fiber and the copper cages of kilohertz telephony is this ingenious new point-to-multipoint technology. Point-to-multipoint, if you can do it, means cheap shared bandwidth,

In This Is	ssue:
------------	-------

Cover Story: Closing the last mile gap; Amadon's Photonic Epiphany; Up-Spectrum Ascent; IRE-Pulus' EDFA Breakthrough; Teligent, Nextlink, and Winstar disrupted

Access Update	Page 4
Motorola Joins the List	Page 8

munications. each transceiver at the hub serving scores of customers. It is the first approach that has the potential to operate in the tens of gigabits per second and meet the floods of WDM backbone bandwidth with comparable bandwidth in the last mile.

I have been looking for such a company for a decade. In the confidence that I could find it, I denounced the spectrum auctions for LMDS (Local Multipoint Distribution Service). But I finally gave up and decided that there would be room for a microwave era before wireless optics inherited the broadband mantle. Surprisingly enough, it turned out to be tediously difficult to shuffle microwaves across a city. Continual delays afflicted the point-to-multipoint gear needed to serve cheaply the target population of some 700,000 U.S. office buildings that have more than a hundred employees. Today literally thousands of companies are struggling with the problem–**P**-**COM** (PCMS), **Netro** (NTRO), **Triton**, **Nortel** (NT), and **Lucent** (LU). **Teligent** (TGNT), **Nextlink** (NXLK), **Winstar** (WCII), and others are rolling out their systems one by one at T-1 (1.544 Mbps) or T-3 (45 Mbps) bandwidths, nearly all point-to-point, with primitive pairs of microwave radios. After four years, the total number of buildings served by microwave wireless ones (see Chart 1, page 3). Over at Nextlink, when we ask how the radios are doing, they say, "Great, great, we have demand to sustain a year-and-a-half of new installations."

When we breathlessly exclaim our relief that someone has made point-to-multipoint radios that work, our Nextlink friend corrects us: "We meant point-to-point installations."

"What about multipoint?" we ask, knowing that up spectrum is a much less attractive alternative to fiber if the network must be stitched together from point-to-point links.

TeraBeam commands at once the most disruptive and most redemptive technology in all communications I have been looking for such a company for a decade. "Well, they're trying very hard."

The first effect of the new wireless optics will be to disrupt the business plans of all the 24 GHz (Teligent), 28 GHz (Nextlink) and 38 GHz (Winstar) microwave companies.

Trying very hard turns out to mean that among the four finalist vendors announced as Nextlink's future radio makers six months ago-Ericsson (ERICY), SpectraPoint, Wavtrace, and **Digital Microwave** (DMIC)-it is possible that none of them will be on the list when the absolutely positively final finalists are announced in another few weeks. In a world in which all the crucial Telecosm technologies are gleefully rolling downhill, always beating out last month's bandwidth projections, up-spectrum radio seems to be pushing a bandwidth boulder uphill. Our friend asserts his confidence that the \$700 million Craig McCaw spent on LMDS spectrum won't be wasted, "because he is a man of vision." Perhaps he can sell it to **AT&T** (T).

I have been listening to the technology. Could it be trying to tell me something?

As TeraBeam founder Greg Amadon puts it, "For the \$28 million that McCaw paid for LMDS spectrum in Seattle alone, we can build an entire 100 gigabit per second system." That means a cell with four sectors each handling twentyfour customers with 1 gigabit per second downstream links.

The first effect of the new wireless optics will be to disrupt the business plans of all the 24 gigahertz (Teligent), 28 gigahertz (Nextlink) and 38 gigahertz (Winstar) microwave companies. Less affected will be the vendors of spread spectrum fixed wireless service to residences and smaller offices and the MMDS (Multichannel Multipoint Distribution Service) plans of **WorldCom** (WCOM) at 2.5 gigahertz. These longer wavelength systems may well find application in towns and rural areas where the 3 kilometer span of TeraBeam optics will seem too small.

But a technology so massively superior is chiefly a bearer of huge opportunities. TeraBeam portends the impending end of the last mile problems of the some thirty-nine companies laying fiber optic backbone networks, including Nextlink. The amazing bitstream pouring through this window on Mercer Street throbs with a High Definition Television stream (Sean Connery cavorting in *The Rock*), five big test files of a gigabyte apiece, and an online video teleconference with no perceptible lags, in which an engineer is responding to my questions about the broadband flood. (Among TeraBeam's inventions is a way to remove the half-second delay from MPEG2 video transmissions, rendering them suitable for video teleconferencing.)

Two kilometers away from Mercer Street, across Lake Union on Queen Anne's Hill, marked by a visible red light for tracking, is the source of the bitstream. It is an invisible infrared beam at a 1550 nanometer wavelength. In the past, such a bitstream would demand a fiber optic link. But between us and the house on Queen Anne's Hill is nothing but light and air. It turns out that I was correct in speculating 10 years ago that if you could send a 1550 nanometer optical signal 1000 kilometers down a fiber thread one tenth the width of a human hair, you might eventually be able to send the signal 3 kilometers without the thread.

Since the early 1990s, the fiber distances have lengthened to 3000 kilometers, the colors of usable light have multiplied to hundreds, and erbium doped amplifiers have gained several watts of power. And sure enough, after more limited successes by **Canon** (CANNY), **Jolt**, and Lucent, a group of spectronic wizards in Seattle have mastered most of the challenges of wireless optics. Fiber insulates the electromagnetic signal in glass; TeraBeam insulates it in air. But it is the same stream of pulsed waves.

Amadon's Photonic Epiphany

The story began in March 1997, when a photonic epiphany struck Greg Amadon. A serial entrepreneur with several minor successes in cellular phones and optic devices, he was also working with engineer Richard Rallison, who had launched a LIDAR (laser radar) system used for detecting windshear at airports. Amadon found his attention wandering toward the window during an entrepreneurial luncheon in the Chairman's Room at the Columbia Tower Club. Atop Seattle's tallest building, it was a site where the mind naturally tends to slip into a self-congratulatory haze of condescension toward the rest of the world spread out so far below.

Instead, the twenty venturers were animatedly chattering about the Next Big Thing, which they assumed would be a belt-borne wireless device that could discreetly divulge to others at a bar your availability, preferences, and technical specifications. Of course, if the specs were truly definitive, why go to the trouble of trundling down to the bar? Just send a virtual simulation of yourself over the net. Written in Java, it could be implemented on any operating system without disturbing you at all. Or it could be compiled by a computer aided manufacturing program and extruded in cellulose by one of those devices that delivers plastic models of specified designs. If you get a bite or a buyer, you can hold an eBay auction.

Anyway, if your amusement is already wearing thin, you can understand why Amadon began ruminating on wireless optics. He found himself gazing out the window at the scene below, dense with glass towers. Most of the plans of the Internet entrepreneurs gathered in the Columbia Club tower depended on broadband communications. How on earth could all these vertical structures be served with fiber optics? he mused. Expensively, he thought. The estimate at the time was some \$300,000 dollars per building, with tangled wires in conduits under the streets and along the walls and up the elevator shafts. Government auctions were scheduled for LMDS microwaves, but Amadon wondered where the roof borne antennas could be placed and whether this microwave bandwidth, restricted to the low megabits per second, would suffice in the face of an explosion of Internet traffic. He suddenly arrived at the thought that the real next big thing would be optical wireless cellular communications through all those glass windows.

The others at the luncheon raised the usual objections. Fog, snow, rain, sleet, and turbulent air, even the tinted windows themselves would shrink the distance the signals could travel to an unusable few feet. The lasers would burn out people's eyes.

Similar objections afflicted the early years of fiber optics, when experts concluded that impurities in the fiber would bar long-distance communications. But Amadon was not convinced. A 1973 Stanford graduate in political science, he had become infatuated with holograms as a student and had built himself a holographic laboratory to contrive those three dimensional images. Then he had gone on to be-

come a White House correspondent during the Carter years and a cameraman for CBS News.

Foreshadowing his later epiphany, one of Amadon's jobs was to cover Ronald Reagan at his ranch outside Santa Barbara. The young amateur engineer set up a telescopic camera on a promontory some five miles away and took a famous picture of a waving Reagan that the President later signed: "There's nothing like being in the public eye." Amadon invented a holographic lens to compress the telescopes into a few score centimeters. TeraBeam would use both holographic and telescopic technology. These proprietary devices, manufacturable for around \$150 apiece, could send and receive infrared beams and focus them on tiny photodetectors that could be coupled to fiber optic cores a few microns wide.

Amadon's invention was exactly on target for the telecosm, and indeed he would find his first major funding for the company at our 1999 Telecosm Conference.

Up-Spectrum Ascent

The key to the Telecosm is the shift of the focus of ascendant technology from the particle side to the wave side of the quantum duality, from the solid states of silicon to the spectronics of communications. The ruling realm of waves is the electromagnetic spectrum, which defines an essentially infinite span of frequencies, measured in hertz or cycles per second that begins with DC, or direct current (no cycles at all), and runs all the way up through cosmic rays at the top, measured in the petahertz (10 to the 15th). So far wireless communications has used well under 1 percent of the available frequencies.

For a decade, I have been awaiting the consummation of the spectronics paradigm. Conveying the benefits of a move up-spectrum, higher frequencies bring shorter wavelengths; smaller, more directional antennas; less interference; more capacity; and more bandwidth.

> More bandwidth, as Claude Shannon showed in his paper launching communications theory in 1948, **Networks**, means less power. In the new paradigm of portable, handheld, fiber Nextlink. optic, battery or solar powered equipment, power would prove to be the most binding constraint and scarcity. But radio engineers have preferred a regime of long and strong, high-powered large

TeraBeam portends the impending end of the last mile problems of the some thirty-nine companies laying fiber optic backbone networks, including

wavelengths that can bounce around the globe, scuttle along the ground, and penetrate walls. They have moved up spectrum only when there was no other way to find more capacity.

For example, the two-way wireless industry began at 100 megahertz and accommodated a few hundred ambulances and police cars. Moving up to 400 megahertz in the mid 1970s, the special mobile radio systems served tens of thousands of taxis, delivery vehicles, and other business communicators. In the 1980s, the industry ascended to 800 megahertz and scored millions of users around the world with analog cellular systems. In the 1990s, Personal Communications Systems (PCS) climbed up to a band at 2 gigahertz and moved toward the hundreds of millions of subscribers. In the new millennium, the entire spectrum is opening up and the harvest is rapidly approaching the billions.

Both at the Telecosm Conference and in the GTR, we have stressed the ultimate promise of optical frequencies in the air and even entertained

Access Update

While awaiting fiberless gigabit optical access, we can contemplate lesser last mile links, which are making progress in bringing broadband to our homes and offices. The US and Canadian DSL market hit 600 thousand subscribers in 1999, with US DSL subscribers at 504 thousand (Chart 2). US and Canadian cable modem subscribers topped 1.8 million at year end. Cable modems also maintained their edge in penetration numbers.

@Home's cable modem subscribers neared 5% of homes passed by two-way service. But even typical cable modem penetration of 5% pales compared to Shaw's deployment of Terayon S-CDMA modems which have exceeded 12% penetration, and Rogers appears to be duplicating Shaw's S-CDMA success with penetration rates popping up in the second half of 1999 following adoption of Terayon's technology (Chart 3). S-CDMA's success is reflected in the latest market share figures that show Terayon leapfrogging Com21 and Nortel to capture second place in 4Q99 (Charts 4, 5). And Terayon just pre-announced higher revenue and earnings expectations for the current quarter in part due to Rogers' continued surge.

The soaring demand for broadband Internet access reflects the increasing dominance of Internet usage. The January Teen Caravan study by Opinion Research Corporation found an amazing 91% of US teenagers use the Internet, 66% at school, 64% at home, 21% from a

friend's house and 12% from the library. Furthermore, a 56% majority of US adults now use the Net, with 46% accessing from home, 37% from work, and 21% accessing from other locations according to Harris Interactive's December survey. PC use (any location) has also surged to 79% of adults (Chart 6). With 90% of home PC users online along with 79% of work PC users, the link between PC use and the Internet is clear (Chart 7).

Though Japan has seen a Net driven boom in PC sales, alternative access devices are rapidly emerging. The largest Japanese Internet service provider is now

GILDER TECHNOLOGY REPORT

NTT DOCOMO due to the enormous popularity of their mobile wireless data service, iMode. (Chart 8). Slow, clunky, and popularly used by teenage girls passing notes and tracking each other down in the mall, this very narrowband (9kbps) wireless data service nevertheless both demonstrates the enormous underlying demand for wireless data and the ongoing liberation of the net from the PC. IMode-connected pocket email terminals, handheld and in-car personal navigator devices, and digital cameras that can upload photos on the go, join data-ready phones as nascent net devices.

Source: Harris Interactive

We have long followed the development of the digital camera market in the GTR (Chart 9). The adoption of digital cameras generally represents the progress of the Microcosm in overtaking yet another formerly analog realm. But more specifically, they are dependant on the rapid improvement of single chip systems on silicon, improvements in battery and power consumption techniques, compact storage technology, high resolution color displays, and now even wireless Internet access, all key measures of Telecosmic progress.

Chart 9

Digital Cameras Shipments Increase with Quality 6,000 2.500 Shipments 5,000 Pixels/Dollar Shipments (Thousands) verage Pi 2,000 4,000 1,500 xels per Dolla 3,000 1,000 2,000 500 1,000 n 1994 1996 1997 1995 1998 1999 Sources: GTG, Nikkei Market Access, Dataquest

The key to the **Telecosm** is focus of ascendant technology from the particle side to the wave side of the quantum duality, from the solid states of silicon to the spectronics of communications.

The key to the Telecosm is the shift of the focus of ascendant technology from the particle side to

Neither Jolt nor Lucent, however, introduced a fully telecosmic cellular product. Optics cannot be fully disruptive until it can serve thousands of customers in a particular locality at a cost competitive with wireline systems, microwaves, fibers, and power lines. Several other companies offered interesting point-to-point line-of-sight technologies that demonstrated the utility of these optical infrared frequencies. But for actual up-spectrum companies, we have long had to settle for the 24 gigahertz, 28 gigahertz, and 38 gigahertz of LMDS, all far below the 200 terahertz infrared region where fiber, and now fiberless, optics operates. With its obnoxious auctions, exclusive spectrum assignments, and radios that would always be ready next year, LMDS was mostly a default paradigm. But now that episode is over and the TeraBeam era begins.

To achieve the breakthrough, TeraBeam had to invent both a cellular hub and customer premises equipment that could scale to scores of thousands of customers. In the process, the team led by Amadon and his colleague Richard Rallison concocted some seven major innovations.

Crucial was a point-to-multipoint downstream technology from the base station or hub to the customer's premises. Without point-tomultipoint, all the expensive optics would have to be duplicated for every user at both ends. It would be necessary to create Lucent's Superbowl setup for every connection. At present, this is what most LMDS deployments do. They use a pair of point-to-point radios for every customer– a transceiver in the hub and a transceiver on the roof of the office–like a set of citizens band radios or walkie talkies. If wireless optics used that topology, it would be limited to expensive point-to-point applications.

In a compact and cost-effective chassis, the TeraBeam hub broadcasts encrypted signals downstream to all users, while keeping point-topoint upstream links from each individual customer site separate. Each downstream floodlight serves one 90 degree cell sector which contains, potentially, scores of customers. The customers identify their own messages by an IP (Internet Protocol) address, then decrypt them in real time, and send responses back to be detected and routed by the hub.

IRE-Polus' EDFA Breakthrough

As in WDM fiber optics, the most crucial component is the erbium doped fiber Amplifier (EDFA) that can enhance hundreds of separate wavelengths or bitstreams at a time. In fiber optics, the EDFA is installed in the fiber itself, to enhance the signal and extend the distance it can travel without being electronically regenerated. In the TeraBeam system, the base station hub houses the EDFA. There it takes the low milliwatt signals from the network and ratchets up their power to a level where they can be broadcast through a cell with a radius of three kilometers or more.

Without this amplifier, it would be necessary to regenerate each signal separately, duplicating this costly and complex device for every customer. For each gigabit link, the amplifier must provide a 200 milliwatt signal (for lower bandwidth connections, the 200 milliwatt signal can be split into signals of 20 milliwatts or less). Some 200 milliwatts for each of twenty-four users in a sector adds up to 5 watts. TeraBeam's problem was apparently a showstopper. Oriented toward the lower powers of fiber optics, the industry did not manufacture 5-watt EDFAs.

As in fiber optics, the gating component in an EDFA is the external pump laser that powers the device. The key manufacturers of pump lasers are **JDS Uniphase** (JDSU) and **SDL** (SDLI), but for standard applications in WDM, EDFAs need a power of only 200 milliwatts. SDL, with its military origins, makes pump lasers that operate at close to 2 watts. SDL's multiwatt pumps are now in demand as actuators for undersea applications and for Raman Amplifiers. Ramans are needed in the longdistance WDM systems now being rolled out by Corvis and Nortel's Qtera to reach 3,000 kilometers through fiber without regeneration. But SDL's pumps do not suffice to propel TeraBeam's signals 3 kilometers through the air.

On the TeraBeam advisory board, however, is Valentine Gapontsev, a burly saturnine expert in optics, who in a previous career in Russia specialized in high-powered lasers used to cut sheet steel or intercept missiles. Now CEO of **IRE-Polus Group**—with their U.S. division, IPG Photonics, in Sturbridge, Massachusetts—he runs the world's only company that can make pump lasers that operate at 5 watts. With high-powered uses multiplying in communications, IRE-Polus should become increasingly important to the Telecosm. TeraBeam has negotiated an exclusive contract with IRE-Polus for highpowered EDFA modules used in broadband wireless optics.

The rest of the TeraBeam hub uses lasers and photodetectors similar to those found in fiber optics systems. Focusing on Internet uses and eschewing the complexities of ATM used by Lucent, TeraBeam's routers and switches employ gigabit ethernet to transmit IP packets. Using advanced telescope optics and unique, high-powered amplifiers in the transmitter, Amadon's strategy is to overdesign the hubs in order to enable cheap and robust systems at the customers' premises.

It is at the customers' premises that the full novelty of TeraBeam becomes evident. Crucial is a compact telescopic antenna design that allows transmission through windows without endangering the eyes of anyone who happens to look into the beam. This requirement meant giving up the previous idea of using cheap 780

nanometer lasers manufactured by the billions for CD players. The 780 wavelength is so close to the frequency of visible light that it readily enters and damages the human retina. The 1550 nanometer wavelength used in fiber optics, however, is too large to damage the eye at the power levels used by TeraBeam. At 1550 nanometers, moreover, the tints commonly used

in office building glass function as a passband filter rather than as a blocking filter.

Also needed was a large collecting aperture to receive the light without making the telescope too large to be readily placed in a building window. Made of a proprietary material, Amadon's holographic optical element costs \$150 to build and eliminates all the expensive curved lenses that raise the cost of a comparable telescope to \$12,000. It enables the 16 inch collector to be incorporated into a receiver no larger than a DirecTV antenna.

Enhancing the system is a pointable beam shaping-technology that allows the transmission of narrow signals to the customer. The directionality of this kind of light permits unlimited frequency reuse since beams can be located side by side. By contrast an LMDS signal would need a 150-foot diameter antenna and elaborate Faraday cage insulation to prevent the different signals from interfering with one another.

The light is narrowly focused to an area of 120 centimeters over a kilometer path. Move-

ment could cause loss of closure. So sophisticated tracking technology enables adjustment to moving targets, such as skyscraper towers shifting in the wind. Although the system automates the adaptive process, it also includes a manual default mechanism.

TeraBeam takes the advances of WDM optics and moves them to the local loop. At the outset, the WDM will be restricted to the company's backhaul systems linking to the larger fiber networks. Relieving any need to use many lambdas in the cell itself is TeraBeam's ability to reuse the same frequency multiple times through juxtaposing the narrow beams of light without interference. But in the future, TeraBeam's technology can also use WDM to multiply capacity and flexibility in the local loop.

The company has a \$27 million investment from a major manufacturing partner that is building the systems. TeraBeam currently employs

some 130 people in Seattle and is continuing to expand. Its strategy is to retain control of its intellectual property and service business, while outsourcing manufacturing and equipment sales.

TeraBeam's business plan envisages a cost per sector for a 1 gigabit per second initial system as \$26,000 a month dropping to \$12,000 over time, including the customer's equipment.

Anticipated monthly revenues per customer are \$6,300. Break even comes at two customers per sector. The initial full load of twenty-four customers will bring in \$150,000 per month. Using splitters, WDM, and other enhancements could raise capacity and potential revenue several times higher. A scaleable system, TeraBeam will be able to expand both its bandwidth and capacity in accord with demand.

Planning to become a major player in U.S. cities, TeraBeam has hired as CEO Dan Hesse, a 23-year veteran of AT&T and president of AT&T's wireless unit. Leaving behind some \$50 million in options at AT&T on the eve of its wireless IPO, Hesse will lead TeraBeam into a direct competition with all the LMDS companies. It currently commands eight hubs in Seattle and plans to roll out service in five cities by June and in fifty markets over the next 30 months. It also contemplates alliances with network partners such as **Level 3** (LVLT) and **Global Crossing** (GBLX).

George Gilder, March 10, 2000

With highpowered uses multiplying in communications, IRE-Polus the world's only company that can make pump lasers that operate at 5 watts should become increasingly important.

Systems Group, MMTA/TIA

TELECOSM TECHNOLOGIES

CABLE TECHNOLOGIES/SERVICES Cable Modern Chipsets Breadcom Corporation (BRCM) 4/17/38 6 * 197 % 46 % - 325 % 41 1185 Cable Modern Chipsets Tarayon (TERN) 12/298 31 % 27 % 45 % - 200 % 45 % 5005 MICROCHIP TECHNOLOGIES Tarayon (TERN) 17/31/87 22 % 157 % 24 % - 107 % 27 % 16 % - 200 16 3385 Manden, Dijpid, and Mixed Signal Processors Analeg, Digital (Micro Crowits (AMCC) 7/31/88 11 %_2 275 % 16 % - 200 16 3385 Digital Video Codecs C-Gule (CUBE) 4/23/89 13 % 8 % 8 % - 122 % 19 % 19 % - 12 % 7 19 0005 Single Chip ASIX Stress, CDMA Chip Sets LSI Logic (LIS) 7/31/97 31 % 64 17 % 7 % 37868 Linear CDMA Power Amplifers, Cable Modems Conexant (DXT) 3/31/8 11 % 166 % 43 % - 170 13 % 50 Single Chip ASIX Stress, CDMA Chip Sets LSI Logic (LIS) 7/31/97 31 % 16 % - 130 % 28 % - 130 % 13 % - 130 % 13 % - 130 % 13 % - 130 % <th>ASCENDANT TECHNOLOGY</th> <th>COMPANY (SYMBOL)</th> <th>REFERENCE DATE</th> <th>REFERENCE PRICE</th> <th>FEB-'00: Month end</th> <th>52 WEEK RANGE</th> <th>MARKET Cap.</th>	ASCENDANT TECHNOLOGY	COMPANY (SYMBOL)	REFERENCE DATE	REFERENCE PRICE	FEB-'00: Month end	52 WEEK RANGE	MARKET Cap.
Cable Modern Chipsets Breadcom Corporation (BRCM) 417/89 6* 197 %, 64%, 325 %, 41.118 S-CDMA Cable Moderns Terayon (TERN) 12,368 31 %, 25 7%, 25 %, 225 %, 25 7%, 25 %, 27 %, 16 %, 27 %, 16 %, 27 %, 18 %, 20 %, 10 8958 Programmable Logic, SiGe, Single-Chip Systems Arten (ATKL) 40,% 17 %, 7 %, 31 %, 38 %, 17 %, 7 %, 13 9958 31 %, 58 %, 13 9958 31 %, 7 %, 3 %, 7 %, 3 %, 7 %, 3 %, 12 9978 31 %, 64 %, 12 %, 11 9906 Single Chip Systems, Siltene Germanium (Sice) Chrs National Semiconductor (NSM) 713 %, 14 %, 16 %, 13 508 Fie	CABLE TECHNOLOGIES/SERVICES	1		1			
S-CDMA Cable Modems Terayon (TERN) 12/3/98 31 ½ 27/16 25/27% 25 %-280 5.008B MICROCHIP TECHNOLOGIES Analog Davices (ADI) 7/31/97 22 ¼ 157 ¼ 24 ¼-167 ¼ 21 /162 Silcon Gernamium (SiGe) based photonic davices Applied Micro Circuits (AMCC) 7/31/98 8 ½ 49 ½ 15 ½, 40 ½, 40	Cable Modem Chipsets	Broadcom Corporation (BRCM)	4/17/98	6 *	197 ¾	46 ¼ - 325 ⁵ / ₈	41.118B
MICROCHIP TECHNOLOGIES Image Image <thimage< th=""> Image Image<</thimage<>	S-CDMA Cable Modems	Terayon (TERN)	12/3/98	31 %	257 1/8	25 ¾ - 280	5.605B
Analog Davices (ADI) 7/31.97 22 % 157 % 24 % 157 % 24 % 157 % 24 % 157 % 2105E Silicon Germanium (SiGe) based photonic devices Applied Micro Circuits (AMCC) 7/3198 11 % 275 % 16 % 230 87% 49 % 7 % 53% 10 83%E Digital Video Codes C-Obde (UBE) 4/25% 23 39 % 8 % 8 % 17 % 77% 3788 Single Chip Systems, Silcon Germanium (SiGe) Chips Salsonal Semiconductor (NSM) 7/3197 31 % 64 12 % 19 9048 Single Chip Systems, Silcon Germanium (SiGe) Chips National Semiconductor (NSM) 11/76 11 % 166 % 43 % 100 13 5308 Field Programmable Gate Arrays (FPGAs) Xilinx (XLNX) 10/2596 8 % 79 % 16 % 80 % 23 % 23 % 23 % 24 % 21 % 23 % 23 % 23 % 24 % 23 % 24 % 23 % 23 % 23 % 23 % 23 % 24 % 23 % 23 % 23 % 23 % 24 % 23 % 24 % 23 % 23 %	MICROCHIP TECHNOLOGIES						
Silicon Germanium (SiGe) based photonic devices Applied Micro Circuits (AMCC) 7/31/98 11 "h ₂ 275 'h ₈ 16 'h ₂ - 290 16.3388 Programmable Logic, SiGe, Single-Chip Systems Atmel (ATML) 4/398 8 'h ₂ 49 'h ₂ 7'h ₂ - 53 'h ₂ 10.8986 Digital Video Codes C-Lube (CUBE) 4/2597 23 93 'h ₂ 8 'h ₂ 8 'h ₂ 8 'h ₂ 8 'h ₂ 11 'h ₂ 16 'h ₂ - 290' Single Chip ASIC Systems, CDMA Chip Sets LSI Logic (LS) 7/31'97 31 'h ₂ 64 12 'h ₂ - 71' 19.0408 Single-Chip Systems, Silicon Germanium (SiGe) Chips National Semiconductr (NSM) 7/31'97 31 'h ₂ 76 'h ₂ 8 'h ₂ - 76 'h ₂ 2.56238 Ortical Fiber, Potonic Components Cene (CIEN) 10/2596 8 'h ₂ 78 'h ₃ 16 'h ₂ - 80' h ₂ 2.56238 Optical Fiber, Photonic Components Ciena (CIEN) 10/2596 8 'h ₂ 78 'h ₃ 16 'h ₂ - 80 'h ₂ 2.5238 Optical Fiber, Photonic Components Ciena (CIEN) 10/9498 8 'h ₂ 16 'h ₂ - 80 'h ₂ 2.3728	Analog, Digital, and Mixed Signal Processors	Analog Devices (ADI)	7/31/97	22 ¾	157 1/4	24 ¾ - 167 ¼	27.105B
Programmable Logic, SiGe, Single-Chip Systems Atmel (ATML) 4/398 8 %/c 49 ½ 7 ½ - 53 ½ 10.895B Digital Video Codecs C-Cube (CUBE) 4/25/97 23 63 ¼ 17 ½ - 73 ½ 19.905B Single Chip Systems, CDMA Chip Sets LSI Logic (LSI) 77,197 31 ½ 98 ¼ 8 ½ - 132 ½ 19.905B Single Chip Systems, Silicon Germanium (SiGe) Chips National Semiconductor (NSM) 73.197 31 ½ 75 ¼ 8 ½ - 76 ½ 12.997B Analog, Digital, and Mixed Signal Processors, Micromirrors Texas Instruments (TXN) 111/7/96 11 ½ 16 ½ - 42 ½ 25.623 Verse Dixion Multiplexing (WDM) Systems, Components Ciena (CIEN) 10/998 8 ½ 159 ½ 16 ½ - 180 ½ 22.372B Optical Fiber, Photonic Components Ciena (CIEN) 10/998 8 ½ 113 ½ 44 ½ 7 ¼ ½ - 203 ¼ 48.415B Submarine Fiber Optic Networks Global Crossing (GLV) 10/3098 14 ½ 48 ½ 20 ¼ - 64 ¼ 37.077B Wave Division Multiplexing (WDM) Components Lose of 10.0501 67.2797 7.1 82.3 ½ 21 ½ - 28.0 ¼ 48 ½ + 24 ½ 10.502 <t< td=""><td>Silicon Germanium (SiGe) based photonic devices</td><td>Applied Micro Circuits (AMCC)</td><td>7/31/98</td><td>11 ¹¹/₃₂</td><td>275 ¹/₁₆</td><td>16 1/8 - 290</td><td>16.338B</td></t<>	Silicon Germanium (SiGe) based photonic devices	Applied Micro Circuits (AMCC)	7/31/98	11 ¹¹ / ₃₂	275 ¹ / ₁₆	16 1/8 - 290	16.338B
Digital Video Codees C-Cube (CUBE) 4/25/97 23 93 ¼ 17 ¼ - 77 ¾, 3786B Linear CDMA Power Amplifiers, Cable Modems Conexant (CNXT) 337/99 13 ½, 98 ¼, 87, -12 ½, 19 3040 Single Chip Systems, CDMA Chip Sets LSI Logic (LSI) 7/31/97 31 ½, 64 12 ¼ - 71 19 4040 Single-Chip Systems, Silcon Garmanium (SiGe) Chips National Seniconductor (NSM) 17/397 31 ½, 75 ¼, 87, ~76 ½, 12 ¼ - 71 13 1530B Single-Chip Systems, Silcon Garmanium (SiGe) Chips Xilinx (XLNX) 110/25/96 8 ½, 79 ¾, 16 ½ 1.0 ½, ~71 13 1530B Field Programmable Gata Arrays (FPGAs) Xilinx (XLNX) 10/25/96 8 ½, 79 ¾, 16 ½ 1.0 ½, ~10 ¼, ~23 3.0 ½ 23 7272 Wave Division Multiplexing (WDM) Systems, Components Giobal Cressing (GBLX) 10/398 14 ¼, 46 ¾, 21 ½ ~20 ¼, 48 4½ 40 %, 37 777 34 % 48 ½, 40 %, 37 777 7 ¼, 28 3 ½, 21 ½ ~20 ½, 48 ½, 47 ½, 7 1½ ‰, 24 ½, 21 ½ ~23 ½, 17 ½	Programmable Logic, SiGe, Single-Chip Systems	Atmel (ATML)	4/3/98	8 ²⁷ / ₃₂	49 ½	7 ½ - 53 ½	10.895B
Linear CDMA Power Amplifiers, Cable Modems Conexant (CNXT) 3/31/99 13 %/12 98 %/ 8 %/- 132 %/ 1905B Single Chip ASIC Systems, DMA Chip Sets LSI Logic (LS) 7/31/97 31 %/ 64 12 %/- 10 1900B Single Chip Systems, Silicon Germanum (SiGe) Chips National Semiconductor (NSM) 7/31/97 31 %/ 16 %/ 8 %/- 76 %/ 12397B Analog, Digital, and Mixed Signal Processors, Micrommors Texas Instruments (TXN) 110/2596 8 %/2 79 %/ 16 %/ 43 %. r 170 13 1530B Processors, Micrommores Conning (GLN) 10/2596 8 %/2 79 %/ 16 %/ 180 %/ 22 572B Optical Ener, Photonic Components Corning (GLN) 10/998 8 %/4 159 %/ 74 %/200 %/ 48 415B Submarine Fiber Optic Network Level 3 (LVLT) 47 %/20 74 %/4 30 077B 74 26 %/4 30 077B Ware Division Multiplexing (WDM) Components JDS Uniphase (JDSU) 672797 74 28 %/4 48 %/4 189 80B Broadband Fiber Network Matro and fiber Network (MTNT)	Digital Video Codecs	C-Cube (CUBE)	4/25/97	23	93 1/4	17 ¼ - 77 ½ _{15/16}	3.786B
Single Chip ASIC Systems, CDMA Chip Sets LSI Logic (LSI) 7/31/97 31 ½ 64 12 ¼-71 19.040B Single-Chip Systems, Silicon Germanium (SiGe) Chips National Semiconductor (NSM) 7/31/97 31 ½ 75 ¼ 87,-76 ½ 12.970B Analog, Digital, and Mixed Signal Processors, Micromirrors Texas Instruments (TXN) 11/7/96 11 ½ 166 ½ 43 ½-170 131530B Field Programmable Gate Arrays (FPGAs) Xilinx (XLNX) 10/25/96 8 ½ 79 ¾ 16 ½ 43 ½-170 131530B OPTICAL NETWORKING Yarays (FPGAs) Xilinx (XLNX) 10/25/96 8 ½ 159 ½ 16 ½ 140 ½ 23.272B Optical Fiber, Photonic Components Ciena (CIEN) 10/3098 14 ½ 46 ¾ 20 ½-64 ¼ 37.077B Wave Division Mutiplexing (WDM) Components JDS Uniphase (JDSU) 6/27/97 7 ¼ 283 ½ 21 ½-280 ½ 93.88B Broadband Fiber Network Metromedia Fiber Network (MFNX) 9/3093 24 ½ 71 ½-6 45 ½-12 ½ 13.74B 45 ½-12 ½ 15 ½-1 ½-6 ½ 13.74B Wireless,	Linear CDMA Power Amplifiers, Cable Modems	Conexant (CNXT)	3/31/99	13 ²⁷ / ₃₂	98 ¹ /4	8 ½ - 132 ½	19.905B
Single-Chip Systems, Silicon Germanium (SiGe) Chips National Semiconductor (NSM) 7/31/97 31 ½ 75 % 8 ½, 76 ½ 12.997B Analog, Digital, and Mixed Signal Processors, Micromirrors Texas Instruments (TXN) 117/96 11 ½ 75 ½ 8 ½, 76 ½ 12.997B Field Programmable Gate Arrays (FPGAs) Xilinx (XLNX) 10/25/96 8 ½ 79 ¾ 16 ½, 48 ½ 25.623B Optical Fiber, Photonic Components Ciena (CIEN) 10/948 8 % 1187 ½ 74 ½, 22.372B Optical Fiber, Photonic Components Global Crossing (GELX) 10/20/98 14 ½, 46 20 ¼, -64 ¼ 20 ¼, -64 ¼ 20 ¼, -64 ¼ 20 ¼, -64 ¼ 20 ½, 44.84.15B Submarine Fiber Optic Network Level 3 (LUT) 4/3/98 31 ¼ 113 ½, 45 ½, -126 ½, 40.952B 40.952B Wireless, Fiber Optic Telecom Chips, Equipment, Systems Lucent Technologies (LU) 11/7/97 21 ½, -71 ½, 28 ½, 12 ½, -53 ¼ 21 ½, -53 ¼ 21 ½, -53 ¼ 12 ½, 53 ½, 1	Single Chip ASIC Systems, CDMA Chip Sets	LSI Logic (LSI)	7/31/97	31 ½	64	12 ¼ - 71	19.040B
Analog, Digital, and Mixed Signal Processors, Micromirrors Texas Instruments (TXN) 11 //s 11 //s 166 1/s 43 % - 170 131.530B Field Programmable Gate Arrays (FPGAs) Xilinx (XLNX) 10 //s //s 8 //s 79 % 16 % - 84 //s 25.632B OPTICAL NETWORKING 10 //s //s 8 //s 79 % 16 % - 160 % 22.372B Optical Fiber, Photonic Components Ciena (CIEN) 10 //s //s 8 //s 187 //s 74 //s - 203 ½ 48.415S Submarine Fiber Optic Networks Global Crossing (GBLX) 10/20/98 14 %/s 46 %/s 20 ½ - 64 ½ 37.077B Wave Division Multiplexing (WDM) Components JDS Uniphase (JDSU) 67/277 7.4 283 //s 44 %/s 48 %/s 48 1/s 84.015S Broadband Fiber Network Level 3 (LVLT) 4/2/98 31 ¼ 113 7/s 45 ½ - 126 ½ 18.308B Broadband Fiber Network Metromedia Fiber Network (MPNX) 9/30/99 24 ½ 71 %/s 21 %/s 32 15 % 12 ½/s 53 ½ 12 ½/s 53 ½ 12 ½/s 53 ½ 2.730B	Single-Chip Systems, Silicon Germanium (SiGe) Chips	National Semiconductor (NSM)	7/31/97	31 ½	75 ½	8 ⁷ / ₈ - 76 ¹ / ₂	12.997B
Field Programmable Gate Arrays (FPGAs) Xilinx (XLNX) 10/25/96 8 ½2 79 ½ 16 ½ 8 ½2 25 6238 OPTICAL NETWORKING 10/9/98 8 ½6 159 ½ 16 ½ 8 ½2 25 6238 Optical Fiber, Photonic Components Corning (GLW) 5/1/98 40 1½6 187 ½ 74 ½6 - 203 ½ 48 415B Submarine Fiber Optic Networks Global Crossing (GBLX) 10/20/98 14 ½6 46 ½ 20 ½ - 64 ½ 37 077B Wave Division Multiplexing (WDM) Components JDS Uniphase (JDSU) 6/27/97 7 ½ 263 ½6 21 ½ - 280 ½ 48 345B Broadband Fiber Network Level 3 (LVLT) 42/98 31 ¼ 113 ½6 45 ½ - 126 ½ 40 958 ½ 48 ½ - 84 ½ 40 952 ½ 48 ½ - 84 ½ 40 952 ½ 48 ½ - 84 ½ 40 958 ½ 48 ½ - 84 ½ 40 952 ½ 48 ½ - 84 ½ 40 958 ½ 48 ½ - 84 ½ 40 958 ½ 48 ½ - 84 ½ 40 952 ½ 48 ½ - 84 ½ 40 958 ½ 40 954 ½ 15 ½6 83 ½ 40 952 ½ 15 ½ 6 32 ½ 15 ½ 88 ½ 16 737B Wireless, Fiber Optic, Cable Equipment, Systems Lucent Technologies (LUT) 11 ½9 7 23 115 ½ 26 ½ - 126 ½ 15 ½ 83 ½	Analog, Digital, and Mixed Signal Processors, Micromirrors	Texas Instruments (TXN)	11/7/96	11 7/8	166 1/8	43 ¾ - 170	131.530B
OPTICAL NETWORKING Image: Control of CLEN Image: CLEN Imag	Field Programmable Gate Arrays (FPGAs)	Xilinx (XLNX)	10/25/96	8 7/32	79 ¾	16 ⁷ / ₁₆ - 84 ¹ / ₂	25.623B
Wave Division Multiplexing (WDM) Systems, Components Ciena (CIEN) 10%/98 8 % 169 % 159 % 16 % - 180 % 22.3728 Optical Fiber, Photonic Components Corning (GLW) 5/1/98 40 % 187 % 74 % - 203 % 48.4158 Submarine Fiber Optic Networks Global Crossing (GBLX) 10/30/98 14 % 18 46 % 20 ½ - 64 ¼ 37.077B Wave Division Multiplexing (WDM) Components JDS Uniphase (JDSU) 6/27/97 7 ¼ 263 % 21 ½ - 280 % 33.888B Broadband Fiber Network Level 3 (LVLT) 4/3/98 31 ¼ 113 ¼ 45 ¼ - 126 ½ 40.952B Broadband Fiber Network Metromedia Fiber Network (MPNX) 9/30/99 24 ½ 71 % 16 % 2 ½ ½ 21 ½ - 53 ½ 15.748B Broadband Fiber Network Nortel Network (NT) 11/3/97 23 115 ½ 12 ½ - 53 ¼ 2.732B Broadband Fiber Network Northe Satt Optic Network (NOPT) 6/30/99 18 ½ 115 ½ 12 ½ 5 ½ 1.748B Broadband Fiber Network Nortelast Optic Network (NOPT) 6/30/99 18 ½ 115 ½ 12 ½ 5 5 ¾ <	OPTICAL NETWORKING						
Optical Fiber, Photonic Components Corning (GLW) 5/1/88 40 %/n 187 %/n 74 %/n - 203 ¼ 48.415B Submarine Fiber Optic Networks Global Crossing (GBLX) 10/30/98 14 %/n 46 %/n 20 ¼ - 64 ¼ 37.077B Wave Division Multiplexing (WDM) Components JDS Uniphase (JDSU) 6/27/97 7 ¼ 263 %/n 21 % - 280 %/n 93.886B Broadband Fiber Network Level 3 (LVLT) 4/3/98 31 ¼ 113 %/n 45 % - 126 %/n 40.952B Wireless, Fiber Optic Celecon Chips, Equipment, Systems Lucent Technologies (LU) 11/7/96 11 %/n 26 %/n 21 %/n - 203 ¼ 48 %/n 48 %/n 40.952B Broadband Fiber Network Level 3 (LVLT) 4/3/98 31 ¼ 113 %/n 45 %/n 19.82B Broadband Fiber Network Metromedia Fiber Network (MFINX) 9/30/99 24 ½ 27 71 %/n 21 %/n - 203 ¼ 18.737B Wireless, Fiber Optic Cable Equipment, Systems Nortel Network (MFINX) 9/30/99 12 ½ 21 %/n - 50 ½ 15.748BB Broadband Fiber Network Nortel Network (NOPT) 6/3	Wave Division Multiplexing (WDM) Systems, Components	Ciena (CIEN)	10/9/98	8 %16	159 7/8	16 ⁵ / ₈ - 180 ³ / ₄	22.372B
Submarine Fiber Optic Networks Global Crossing (GBLX) 10/30/98 14 ¹ / ₁₆ 46 ⁴ / ₈ 20 ¹ / ₈ - 64 ¹ / ₄ 37.077B Wave Division Multiplexing (WDM) Components JDS Uniphase (JDSU) 6/27/97 7 ¹ / ₄ 263 ³ / ₇₆ 21 ¹ / ₇₆ - 280 ¹ / ₇₆ 93.886B Broadband Fiber Network Level 3 (LVLT) 4/3/98 31 ¹ / ₄ 113 ⁷ / ₇₆ 45 ¹ / ₄ - 126 ⁵ / ₇₆ 40.952B Wireless, Fiber Optic Telecom Chips, Equipment, Systems Lucent Technologies (LU) 11/7/96 11 ²⁵ / ₂₂ 59 ¹ / ₂ 48 ¹ / ₄ - 84 ¹ / ₇₆ 16.737B Wireless, Fiber Optic, Cable Equipment, Systems Nortel Network (MFNX) 9/30/99 24 ¹ / ₁₆ 11 ¹ / ₇₆ 21 ¹ / ₇₆ - 83 16.737B Broadband Fiber Network Metromedia Fiber Network (NOPT) 6/30/99 15 ¹ / ₁₆ 11 ² / ₇₄ 12 ¹ / ₇₆ - 53 ³ / ₇₄ 2.730B Broadband Fiber Network NorthEast Optic Network (NOPT) 6/30/99 15 ¹ / ₁₆ 11 ² / ₇₆ 12 ⁵ / ₇₆ - 53 ³ / ₇₄ 2.730B Cow Earth Orbit Satellite (LEOS) Wireless Transmission Globalstar (GSTRF) 8/29/96 11 ¹ / ₁₆ 28 ¹ / ₂ 1	Optical Fiber, Photonic Components	Corning (GLW)	5/1/98	40 ¹⁵ / ₁₆	187 7/8	74 ¹¹ / ₁₆ - 203 ¹ / ₄	48.415B
Wave Division Multiplexing (WDM) Components JDS Uniphase (JDSU) 6/27/97 7 ¼ 263 ¾ 21 ¾ - 280 ½ 93.886B Broadband Fiber Network Level 3 (LVLT) 4/3/98 31 ¼ 113 ⅓ 45 ¼ - 126 ⅓ 40.952B Wireless, Fiber Optic Telecom Chips, Equipment, Systems Lucent Technologies (LU) 11/7/96 11 ⅔ ₂₂ 59 ½ 48 ¼ - 84 ⅓ 189.805B Broadband Fiber Network Metromedia Fiber Network (MFNX) 9/30/99 24 ½ 71 號 6 21 ⅓ 6 - 83 16.737B Wireless, Fiber Optic, Cable Equipment, Systems Nortel Network (NDPT) 11/3/97 23 115 ⅓ 26 ⅓ - 126 ½ 157.488B Broadband Fiber Network NorthEast Optic Network (NOPT) 6/30/99 15 ⅓ 112 ¼ 12 - 159 1.829B Wireless, Fiber Optic Stellite (LEOS) Wireless Transmission Globalstar (GSTRF) 8/28/96 11 ⅓ 15 ½ 14 ⅓ - 25 ⅓ 3.796B CDMA Handsets and Broadband Innovations Motorola (MOT) 2/29/00 172 172 65 ⅓ - 175 ½ 104.765B Nationwide Fiber and Broadband Wireless Networks Nextlink (NXLK) 2/11/99 <td>Submarine Fiber Optic Networks</td> <td>Global Crossing (GBLX)</td> <td>10/30/98</td> <td>14 ¹³/₁₆</td> <td>46 5/8</td> <td>20 1/4 - 64 1/4</td> <td>37.077B</td>	Submarine Fiber Optic Networks	Global Crossing (GBLX)	10/30/98	14 ¹³ / ₁₆	46 5/8	20 1/4 - 64 1/4	37.077B
Broadband Fiber Network Level 3 (LVLT) 4/3/98 31 ¼ 113 ⅓ 45 ¼ - 126 ⅓ 40.952B Wireless, Fiber Optic Telecom Chips, Equipment, Systems Lucent Technologies (LU) 11/7/96 11 ²½z 59 ½ 48 ¼ - 84 ¼ 189.805B Broadband Fiber Network Metromedia Fiber Network (MFNX) 9/30/99 24 ½ 71 ⁵½n 21 ½ - 83 16.737B Wireless, Fiber Optic, Cable Equipment, Systems Nortel Networks (NT) 11/3/97 23 115 ⅓ 26 ⅓ - 126 ½ 157.488B Broadband Fiber Network NorthEast Optic Network (NOPT) 6/30/99 15 ⅓ 112 ¼ 12 - 159 1.829B WireLESS TECHNOLOGIES/SERVICES	Wave Division Multiplexing (WDM) Components	JDS Uniphase (JDSU)	6/27/97	7 ¼	263 5/8	21 3/8 - 280 7/8	93.886B
Wireless, Fiber Optic Telecom Chips, Equipment, Systems Lucent Technologies (LU) 11/7/96 11 2%2 59 ½ 48 ¼ - 84 ¼ 183.805B Broadband Fiber Network Metromedia Fiber Network (MFNX) 9/30/99 24 ½ 71 5%6 21 ¼ 6 83 16.737B Wireless, Fiber Optic, Cable Equipment, Systems Nortel Networks (NT) 11/3/97 23 115 ½ 26 ¼ - 126 ½ 157.488B Broadband Fiber Network NorthEast Optic Network (NOPT) 6/30/99 15 ½ 112 ½ 12 - 159 1.829B WireLESS TECHNOLOGIES/SERVICES 11 2 ½ 12 - 53 ¾ 2.730B Satellite Technology Loral (LOR) 7/30/99 18 ½ 15 ½ 14 ¼ - 25 ¾ 3.796B CDM A Handsets and Broadband Innovations Motorola (MOT) 2/29/00 172 172 65 ½ - 175 ½ 104.765B Nationwide Fiber and Broadband Wireless Networks Nextlink (NXLK) 2/11/9 20 ½ 3 ½ 9 ½ - 200 100.947B Nationwide CDMA Wireless Network Sprint PCS (PCS) 12/3/98 7 ¾ 51 ¾ 19 ½ - 57 ¾ 48.	Broadband Fiber Network	Level 3 (LVLT)	4/3/98	31 ¹ /4	113 1/8	45 ¼ - 126 ¾	40.952B
Broadband Fiber Network Metromedia Fiber Network (MFNX) 9/30/99 24 ½ 71 ½/16 21 ½/16 83 16.737B Wireless, Fiber Optic, Cable Equipment, Systems Nortel Networks (NT) 11/3/97 23 115 ½ 26 ½ 12.488B Broadband Fiber Network NorthEast Optic Network (NOPT) 6/30/99 15 ½ 112 ¼ 12 - 159 1.829B Wireless, Fiber Optic, Cable Equipment, Systems Globalstar (GSTRF) 8/29/96 11 ½ 28 ½ 12 ½ - 53 ¾ 2.730B Satellite Technology Loral (LOR) 7/30/99 18 ½ 15 ½ 14 ¼ - 25 ¼ 3.796B CDMA Handsets and Broadband Innovations Motorola (MOT) 2/29/00 172 172 65 ½ - 175 ½ 104.765B Nationwide Fiber and Broadband Wireless Networks Nextlink (NXLK) 2/11/99 20 ½ % 110 ½ 23 ½ - 175 ½ 100.947B Nationwide CDMA Wireless Network Sprint PCS (PCS) 12/3/98 7 ½ % 51 ¼ 19 ½ - 57 ½ % 44.438B Internet Enabled Business Management Software, Java Intentia (Stockholm Exchange) 4/3/98 29	Wireless, Fiber Optic Telecom Chips, Equipment, Systems	Lucent Technologies (LU)	11/7/96	11 ²⁵ / ₃₂	59 ½	48 ¼ - 84 ¼	189.805B
Wireless, Fiber Optic, Cable Equipment, Systems Nortel Networks (NT) 11/3/97 23 115 ½ 26 ½ 157.488B Broadband Fiber Network NorthEast Optic Network (NOPT) 6/30/99 15 ½ 112 ¼ 12 - 159 1.829B WIRELESS TECHNOLOGIES/SERVICES Image: Constraint of the statellite (LEOS) Wireless Transmission Globalstar (GSTRF) 8/29/96 11 ½ 12 ½ - 53 ¾ 2.730B Satellite Technology Loral (LOR) 7/30/99 18 ½ 15 ½ 14 ½ - 25 ¾ 3.796B CDMA Handsets and Broadband Innovations Motorola (MOT) 2/29/00 172 172 65 ¾ - 175 ½ 104.765B Nationwide Fiber and Broadband Wireless Networks Nextlink (NXLK) 2/11/99 20 ½ 110 ½ 23 ½ - 119 ½ 14.708B Code Division Multiple Access (CDMA) Chips, Phones Qualcomm (QCOM) 7/19/96 4 ¾ 142 ½ 9 ½ - 200 100.947B Nationwide CDMA Wireless Network Sprint PCS (PCS) 12/3/98 7 ½ 82 ½ 33 ¾ - 90 ¾ 4.443B INTERNET TECHNOLOGIES/SERVICES Intentia (Stockholm Exchange) 4/3/98 29 <td>Broadband Fiber Network</td> <td>Metromedia Flber Network (MFNX)</td> <td>9/30/99</td> <td>24 1/2</td> <td>71 ¹⁵/16</td> <td>21 ¹/₁₆ - 83</td> <td>16.737B</td>	Broadband Fiber Network	Metromedia Flber Network (MFNX)	9/30/99	24 1/2	71 ¹⁵ /16	21 ¹ / ₁₆ - 83	16.737B
Broadband Fiber Network NorthEast Optic Network (NOPT) 6/30/99 15 ¼ ₁₆ 112 ¼ 12 - 159 1.829B WIRELESS TECHNOLOGIES/SERVICES Globalstar (GSTRF) 8/29/96 11 ¼ 28 ½ 12 ½ - 53 ¾ 2.730B Satellite Technology Loral (LOR) 7/30/99 18 ½ 15 ½ 14 ½ - 25 ¾ 3.796B CDMA Handsets and Broadband Innovations Motorola (MOT) 2/29/00 172 172 65 ½ - 175 ½ 104.765B Nationwide Fiber and Broadband Wireless Networks Nextlink (NXLK) 2/11/99 20 ¼ 110 ½ 23 ¼ - 119 ½ 14.708B Code Division Multiple Access (CDMA) Chips, Phones Qualcomm (QCOM) 7/19/96 4 ¾ 142 ¼ 9 ½ - 57 ¾ 4.8091B Broadband Wireless Network Sprint PCS (PCS) 12/3/98 7 ¾ 51 ¾ 19 ½ - 57 ¾ 4.8091B Broadband Wireless Services Teligent (TGNT) 11/21/97 21 ½ * 82 ½ 33 ⅓ - 90 ¾ 4.443B INTERNET TECHNOLOGIES/SERVICES Intentia (Stockholm Exchange) 4/3/98 29 19 ½ 17 ½ - 35 ¼ 0.477B	Wireless, Fiber Optic, Cable Equipment, Systems	Nortel Networks (NT)	11/3/97	23	115 1/8	26 1/8 - 126 1/2	157.488B
WIRELESS TECHNOLOGIES/SERVICES Image: Constraint of the service of the	Broadband Fiber Network	NorthEast Optic Network (NOPT)	6/30/99	15 ¼ ₁₆	112 1/4	12 - 159	1.829B
Low Earth Orbit Satellite (LEOS) Wireless Transmission Globalstar (GSTRF) 8/29/96 11 ½ 28 ½ 12 ½ - 53 ¾ 2.730B Satellite Technology Loral (LOR) 7/30/99 18 ½ 15 ½ 14 ½ - 25 ¾ 3.796B CDMA Handsets and Broadband Innovations Motorola (MOT) 2/29/00 172 172 65 ⅔ - 175 ½ 104.765B Nationwide Fiber and Broadband Wireless Networks Nextlink (NXLK) 2/11/99 20 ½ 12 ½ 9 ½ - 200 109.47B Code Division Multiple Access (CDMA) Chips, Phones Qualcomm (QCOM) 7/19/96 4 ¾ 142 ½ 9 ½ - 57 ¾ 6 48.091B Nationwide CDMA Wireless Network Sprint PCS (PCS) 12/3/98 7 ¾ 6 51 ¾ 19 ½ - 57 ¾ 6 48.091B Broadband Wireless Services Teligent (TGNT) 11/21/97 21 ½ * 82 ½ 33 ⅔ e 90 ¾ 4.443B Internet Enabled Business Management Software, Java Intentia (Stockholm Exchange) 4/3/98 29 19 ½ - 35 ¼ 0.477B Network storage and caching solutions Mirror Image (Xcelera) (XLA) 1/31/00 116 346½	WIRELESS TECHNOLOGIES/SERVICES						
Satellite Technology Loral (LOR) 7/30/99 18 ½ 15 ½ 14 ½ 25 ¾ 3.796B CDMA Handsets and Broadband Innovations Motorola (MOT) 2/29/00 172 172 65 ¾ 175 ½ 104.765B Nationwide Fiber and Broadband Wireless Networks Nextlink (NXLK) 2/11/99 20 ½ 110 ½ 23 ½ 19 ½ 14.708B Code Division Multiple Access (CDMA) Chips, Phones Qualcomm (QCOM) 7/19/96 4 ¾ 142 ½ 9 ½ 200 100.947B Nationwide CDMA Wireless Network Sprint PCS (PCS) 12/3/98 7 ¾ 51 ¾ 19 ½ 57 ¾ 48.091B Broadband Wireless Services Teligent (TGNT) 11/21/97 21 ½ 82 ½ 33 ¾ 90 ¾ 4.443B INTERNET TECHNOLOGIES/SERVICES Intentia (Stockholm Exchange) 4/3/98 29 19 ½ 17 ½ 35 ¼ 0.477B Network storage and caching solutions Mirror Image (Xcelera) (XLA) 1/31/00 116 346½ % 37 19.180B Telecommunication Networks, Internet Access MCI	Low Earth Orbit Satellite (LEOS) Wireless Transmission	Globalstar (GSTRF)	8/29/96	11 7/8	28 ½	12 5⁄8 - 53 3⁄4	2.730B
CDMA Handsets and Broadband Innovations Motorola (MOT) 2/29/00 172 172 65 % - 175 ½ 104.765B Nationwide Fiber and Broadband Wireless Networks Nextlink (NXLK) 2/11/99 20 7/16 110 ½ 23 7/6 - 119 ¼ 14.708B Code Division Multiple Access (CDMA) Chips, Phones Qualcomm (QCOM) 7/19/96 4 ¾ 142 7/16 9 ½ - 200 100.947B Nationwide CDMA Wireless Network Sprint PCS (PCS) 12/3/98 7 ¾ 6 51 ¾ 19 ½ - 57 ¾ 6 48.091B Broadband Wireless Services Teligent (TGNT) 11/21/97 21 ½ * 82 ½ 33 ¾ - 90 ¾ 4.443B INTERNET TECHNOLOGIES/SERVICES Intentia (Stockholm Exchange) 4/3/98 29 19 ½ - 35 ¼ 0.477B Network storage and caching solutions Mirror Image (Xcelera) (XLA) 1/31/00 116 346 ½ 5/6 - 371 9.180B Telecommunication Networks, Internet Access MCI WorldCom (WCOM) 8/29/97 19 ⁶ / ₆₄ 40 ¾ 6 ⁵ / ₈ 40 ⁵ / ₈ 10.795B Java Programming Language, Internet Servers Sun Microsystems (SUNW) 8/13/96 13 ¾	Satellite Technology	Loral (LOR)	7/30/99	18 7/8	15 ½	14 ⁷ / ₈ - 25 ³ / ₄	3.796B
Nationwide Fiber and Broadband Wireless Networks Nextlink (NXLK) 2/11/99 20 7/16 110 1/2 23 7/6 - 119 1/6 14.708B Code Division Multiple Access (CDMA) Chips, Phones Qualcomm (QCOM) 7/19/96 4 3/4 142 7/16 9 1/8 - 200 100.947B Nationwide CDMA Wireless Network Sprint PCS (PCS) 12/3/98 7 3/16 51 3/4 19 1/2 - 57 3/16 48.091B Broadband Wireless Services Teligent (TGNT) 11/21/97 21 1/2 * 82 1/8 33 3/8 - 90 3/4 4.443B Internet Enabled Business Management Software, Java Intentia (Stockholm Exchange) 4/3/98 29 19 7/8 17 1/2 - 35 1/4 0.477B Network storage and caching solutions Mirror Image (Xcelera) (XLA) 1/31/00 116 3461/2 5/8 - 371 9.180B Telecommunication Networks, Internet Access MCI WorldCom (WCOM) 8/29/97 19 61/64 46 5/8 40 5/8 - 64 1/2 132.415B Directory, Network Storage Novell (NOVL) 11/30/99 19 1/2 33 1/16 16 1/16 - 44 5/16 10.795B Java Programming Language, Internet Servers Sun Microsystem	CDMA Handsets and Broadband Innovations	Motorola (MOT)	2/29/00	172	172	65 ¾ - 175 ½	104.765B
Code Division Multiple Access (CDMA) Chips, Phones Qualcomm (QCOM) 7/19/96 4 ¾ 142 ¼ 9 ⅓ - 200 100.947B Nationwide CDMA Wireless Network Sprint PCS (PCS) 12/3/98 7 ¾16 51 ¾ 19 ½ - 57 ¾16 48.091B Broadband Wireless Services Teligent (TGNT) 11/21/97 21 ½ * 82 ⅓ 33 ¾6 - 90 ¾ 4.443B INTERNET TECHNOLOGIES/SERVICES Intentia (Stockholm Exchange) 4/3/98 29 19 ⅓ /2 - 35 ¼ 0.477B Network storage and caching solutions Mirror Image (Xcelera) (XLA) 1/31/00 116 346½ 5½ - 371 9.180B Telecommunication Networks, Internet Access MCI WorldCom (WCOM) 8/29/97 19 ‰4 46 ⅛<	Nationwide Fiber and Broadband Wireless Networks	Nextlink (NXLK)	2/11/99	20 7/16	110 1/2	23 1/8 - 119 1/8	14.708B
Nationwide CDMA Wireless Network Sprint PCS (PCS) 12/3/98 7 ¾ ₁₆ 51 ¾ 19 ½ - 57 ¾ ₁₆ 48.091B Broadband Wireless Services Teligent (TGNT) 11/21/97 21 ½ * 82 ⅓ 33 ¾ - 90 ¾ 4.443B INTERNET TECHNOLOGIES/SERVICES Intentia (Stockholm Exchange) 4/3/98 29 19 ½ - 35 ¼ 0.477B Network storage and caching solutions Mirror Image (Xcelera) (XLA) 1/31/00 116 346½ 5½ - 371 9.180B Telecommunication Networks, Internet Access MCI WorldCom (WCOM) 8/29/97 19 ‰ 46 ‰ 40 ‰ - 64 ½ 132.415B Directory, Network Storage Novell (NOVL) 11/30/99 19 ½ 33 ¼ 95 ¼ 24 ‰ 6 - 99 ‰/16 10.795B Java Programming Language, Internet Servers Sun Microsystems (SUNW) 8/13/96 13 ¾ 95 ¼ 24 ‰ 6 - 99 ‰/16 16.6688B	Code Division Multiple Access (CDMA) Chips, Phones	Qualcomm (QCOM)	7/19/96	4 ¾	142 7/ ₁₆	9 ½ - 200	100.947B
Broadband Wireless ServicesTeligent (TGNT)11/21/9721 ½ *82 ½33 ¾ - 90 ¾4.443BINTERNET TECHNOLOGIES/SERVICESInternet Enabled Business Management Software, JavaIntentia (Stockholm Exchange)4/3/982919 ⅛17 ½ - 35 ¼0.477BNetwork storage and caching solutionsMirror Image (Xcelera) (XLA)1/31/00116346½5½ - 3719.180BTelecommunication Networks, Internet AccessMCI WorldCom (WCOM)8/29/9719 ½46 ⅛40 ⅛ - 64 ½132.415BDirectory, Network StorageNovell (NOVL)11/30/9919 ½33 ¼616 ¼6 - 44 ¾610.795BJava Programming Language, Internet ServersSun Microsystems (SUNW)8/13/9613 ¾95 ¼24 ¾ 6 - 99 ⅛16166.688B	Nationwide CDMA Wireless Network	Sprint PCS (PCS)	12/3/98	7 ⅔ ₁₆	51 ¾	19 ¹ / ₂ - 57 ³ / ₁₆	48.091B
INTERNET TECHNOLOGIES/SERVICESIntentia (Stockholm Exchange)4/3/982919 ½17 ½ - 35 ¼0.477BInternet Enabled Business Management Software, JavaIntentia (Stockholm Exchange)4/3/982919 ½17 ½ - 35 ¼0.477BNetwork storage and caching solutionsMirror Image (Xcelera) (XLA)1/31/00116346½5% - 3719.180BTelecommunication Networks, Internet AccessMCI WorldCom (WCOM)8/29/9719 ½46 ⅓40 ⅓ - 64 ½132.415BDirectory, Network StorageNovell (NOVL)11/30/9919 ½33 ¼616 ¼6 - 44 ⅔610.795BJava Programming Language, Internet ServersSun Microsystems (SUNW)8/13/9613 ¾95 ¼24 ⅓/6 - 99 ⅛/6166.688B	Broadband Wireless Services	Teligent (TGNT)	11/21/97	21 1/2 *	82 ¹ /8	33 ¾ - 90 ¾	4.443B
Internet Enabled Business Management Software, Java Intentia (Stockholm Exchange) 4/3/98 29 19 ⁷ / ₈ 17 ¹ / ₂ - 35 ¹ / ₄ 0.477B Network storage and caching solutions Mirror Image (Xcelera) (XLA) 1/31/00 116 346 ¹ / ₂ ⁵ / ₈ - 371 9.180B Telecommunication Networks, Internet Access MCI WorldCom (WCOM) 8/29/97 19 ⁶¹ / ₆₄ 46 ⁵ / ₈ 40 ⁵ / ₈ - 64 ¹ / ₂ 132.415B Directory, Network Storage Novell (NOVL) 11/30/99 19 ¹ / ₂ 33 ¹ / ₁₆ 16 ¹ / ₁₆ - 44 ⁹ / ₁₆ 10.795B Java Programming Language, Internet Servers Sun Microsystems (SUNW) 8/13/96 13 ³ / ₄ 95 ¹ / ₄ 24 ⁹ / ₁₆ - 99 ¹⁵ / ₁₆ 166.688B	INTERNET TECHNOLOGIES/SERVICES						
Network storage and caching solutions Mirror Image (Xcelera) (XLA) 1/31/00 116 3461/2 5% - 371 9.180B Telecommunication Networks, Internet Access MCI WorldCom (WCOM) 8/29/97 19 61/64 46 5% 40 5% - 64 1/2 132.415B Directory, Network Storage Novell (NOVL) 11/30/99 19 1/2 33 1/16 16 1/16 - 44 9/16 10.795B Java Programming Language, Internet Servers Sun Microsystems (SUNW) 8/13/96 13 3/4 95 1/4 24 9/16 - 99 15/16 166.688B	Internet Enabled Business Management Software, Java	Intentia (Stockholm Exchange)	4/3/98	29	19 %	17 ½ - 35 ¼	0.477R
Telecommunication Networks, Internet Access MCI WorldCom (WCOM) 8/29/97 19 ⁶¹ / ₆₄ 46 ⁵ / ₈ 40 ⁵ / ₈ - 64 ¹ / ₂ 132.415B Directory, Network Storage Novell (NOVL) 11/30/99 19 ¹ / ₂ 33 ¹ / ₁₆ 16 ¹ / ₁₆ - 44 ⁴ / ₁₆ 10.795B Java Programming Language, Internet Servers Sun Microsystems (SUNW) 8/13/96 13 ³ / ₄ 95 ¹ / ₄ 24 ⁴ / ₁₆ - 99 ¹⁵ / ₁₆ 166.688B	Network storage and caching solutions	Mirror Image (Xcelera) (XLA)	1/31/00	116	3461/2	5/8 - 371	9,180B
Directory, Network Storage Novell (NOVL) 11/30/99 19 ½ 33 ¼ 16 ¼6 - 44 ¾6 10.795B Java Programming Language, Internet Servers Sun Microsystems (SUNW) 8/13/96 13 ¾ 95 ¼ 24 ¾6 - 99 ⅛16 166.688B	Telecommunication Networks, Internet Access	MCI WorldCom (WCOM)	8/29/97	19 61/64	46 5/2	40 5/8 - 64 1/2	132,415B
Java Programming Language, Internet Servers Sun Microsystems (SUNW) 8/13/96 13 ¾ 95 ¼ 24 ‰ 6 9 ‰ 166.688B	Directory. Network Storage	Novell (NOVL)	11/30/99	19 1/2	33 ¹ /16	16 ¹ / ₁₆ - 44 ⁹ / ₁₆	10.795B
	Java Programming Language, Internet Servers	Sun Microsystems (SUNW)	8/13/96	13 3/4	95 ¹ / ₄	24 ⁹ /16 - 99 ¹⁵ /16	166.688B

ADDED TO THE TABLE: MOT

As noted in our last issue, Motorola has increasingly focused on its Telecosmic activities and we place them on the list this month for their achievements in CDMA handsets and broadband innovations.

NOTE: This table lists technologies in the Gilder Paradigm, and representative companies that possess the ascendant technologies. But by no means are the technologies exclusive to these companies. In keeping with our objective of providing a technology strategy report, companies appear on this list only for these core competencies, without any judgement of market price or timing. Reference Price is a company's closing stock price on the Reference Date, the date on which the company was added to the Table. Since March 1999, all "current" stock prices and new Reference Prices/Dates are closing prices for the last trading day of the month prior to publication. Mr. Gilder and other GTR staff may hold positions in some or all stocks listed.

GILDER TECHNOLOGY REPORT

published by Gilder Technology Group, Inc. and Forbes Inc. Monument Mills • PO Box 660 • Housatonic, MA 01236

Tel: (413)274-3050 • Fax: (413)274-3031 • Email: gtg@gildertech.com EDITOR: George Gilder PUBLISHER: Richard Vigilante DIRECTOR OF RESEARCH: Kenneth Ehrhart TECHNOLOGY ANALYST: Jeff Dahlberg MANAGING EDITOR: David S. Dortman SUBSCRIPTION DIRECTOR: Rosaline Fernandes BUSINESS DEVELOPMENT: Mark T. Ziebarth

* INITIAL PUBLIC OFFERING

FOR SUBSCRIPTION INFORMATION TELEPHONE TOLL FREE: (800) 292-4380 WEBSITE: www.gildertech.com Copyright © 2000, by Gilder Technology Group Inc.